
Design and Analysis of Algorithms

Michael Gelfond

Texas Tech University

September, 2017

Michael Gelfond TTU

Introduction

Two ideas are gleaming on the jeweler’s velvet.

First is the calculus, the second, the algorithm.

The calculus made modern science possible; but it has
been the algorithm that has made possible the modern
world.

David Berlinski, The Advent of the Algorithm.

Michael Gelfond TTU

Introduction

The idea of the algorithm is at least 300 years old, so its
understanding requires much work and effort.

The main goal of this class is to deepen our thinking
about algorithms.

This is necessary to excel in your profession, but,
perhaps more importantly, it can substantially improve
your thinking skills.

Michael Gelfond TTU

BASIC TERMINOLOGY

Basic computation - systematic manipulation of input
data.

Description of such a manipulation is called algorithm.

An algorithm presupposes a fixed collection of
elementary data types and operations which can be
directly executed by a computer (a person or a
machine).

Computation is normally used to obtain output data
which satisfy some desired properties (often referred to
as specification).

Michael Gelfond TTU

Problem 1: Stable Marriage Problem

Given: N men and N women. Each man ranks all the
women (no equal rank is allowed). Similarly for each
women.

Problem: Find an engagement between men and women
such that

Engagement is between one man and one women.

Everyone must be engaged.

Engagement is stable, i.e. there are no pairs 〈m1, w1〉
and 〈m2, w2〉 such that

m1 prefers w2 to w1 and
w2 prefers m1 to m2.

Michael Gelfond TTU

Modeling the problem

It is often useful to replace original problem by its
mathematical version, often referred to as model of the
problem.
In our case the model is simple: we have two sets of
points and the corresponding preference relations.

Need to find one-to-one correspondence between the
sets which satisfy stable condition on preferences.

Recall, that function F : A→ B is one-to-one
correspondence if

Different elements of A are mapped into different
elements of B.

For every element Y of B there is an element X in A
such that Y = F(X).

Michael Gelfond TTU

Stable Marriage Algorithm

We use variable m for men and w for women.

function match
while ∃ m (free_man(m)∧ ∃ w ¬proposed(m,w)) do

1 Select a free man m.
2 let m propose to highest-ranked woman w he has
not yet proposed.

3 if w is free let her accept, otherwise
4 if w prefers m to her current fiance let her break
the engagement and accept m’s proposal.

return the set of all engaged pairs.

Michael Gelfond TTU

Correctness Proof

1. The algorithm terminates. At every step a man
proposes to a woman he has not proposed yet.
Therefore, the maximum number of steps is N×N.

2. The algorithm defines one-to-one correspondence
between men and women.

A man is engaged to at most one woman. A man
proposes (and hence can get engaged) only if he is
free.
Every man is engaged. Suppose m is not engaged,
i.e. he was rejected by every woman. A woman
rejects a proposal only if she is engaged, and once
engaged she stays engaged. Thus, at the end every
woman is engaged to some man. Since a man
cannot be engaged to two women (see above), N
men are engaged. Contradicts our assumption.

Michael Gelfond TTU

Correctness Proof

Different men are engaged to different women.
A woman remains engaged from the point at which
she receives her first proposal, and, since ties are
not allowed, every change increases the quality of
her partner. Hence she cannot be engaged to two
different men.

This completes the proof of (2).

Michael Gelfond TTU

Correctness proof

3. The final engagement S is stable. Suppose it is not,
i.e. S contains pairs 〈m1, w1〉 and 〈m2, w2〉 such that

m1 prefers w2 to w1 and
w2 prefers m1 to m2

To get engaged to w1, m1 had to propose to her at some
iteration. Since m1 prefers w2 he had to propose to w2
at earlier iteration. There are two possible outcomes:

(a) m1 and w2 became engaged. To see that this is
impossible let us notice that every change of
engagement for a women increases quality of her
partner so she would never get engaged to m2.
Contradiction.

(b) w2 was engaged to someone better than m1. By the
same argument she would never get engaged to m2.
Contradiction. m1 could not have been engaged to w1!

Michael Gelfond TTU

History

First considered by David Gale and Lloyd Shapley (two
mathematical economists), in “College Admission and
Stability of Marriage”, 1962:

Given a set of preferences among employers and
applicants, can we assign applicants to employers so
that for every employer E, and every applicant A who is
not scheduled to work for E, at least one of the
following holds:

1 E prefers everyone of its accepted applicants to A; or
2 A prefers his current situation over working for E.

In 2012 Shapley received a Nobel Prize in Economics:
“for the theory of stable allocations and the practice of
market design”.

Michael Gelfond TTU

Do we get all the stable matchings?

First there could be more than one stable matching.

Example:
m prefers w to w′

m′ prefers w′ to w
w prefers m′ to m
w′ prefers m to m′

Our algorithm returns 〈m,w〉 and 〈m′, w′〉

But, 〈m,w′〉 and 〈m′, w〉 is also a stable matching!

It will not be returned by our algorithm no matter
which free man is selected first.

Michael Gelfond TTU

Does the outcome depend on the choice of free man?

It does not! First, some definitions:

w is a valid partner of m if 〈m,w〉 belongs to some
stable matching.

w is the best valid partner of m (best(m)) if w is a valid
partner of m and no woman ranked higher than w is a
valid partner of m.

Let S∗ = {〈m,best(m)〉}

Michael Gelfond TTU

Theorem: Every execution of our algorithm returns S∗

1. Suppose this is not the case, i,e. there is a run I of
the algorithm which returns SI 6= S∗.

2. Then there is a man who, in run I, proposed to his
valid partner and was (immediately or eventually)
rejected by her.

3. Let m be the first such man, and denote the woman
he proposed to by w.

4. Since everyone is engaged, and a woman rejects a
proposal only if she gets a better partner, SI contains
〈m′, w〉 where w prefers m′ to m.

Michael Gelfond TTU

Theorem: Every execution of our algorithm returns S∗

5. Since w is a valid partner of m, there is stable
matching S such that

〈m,w〉 ∈ S.

In S, m′ is engaged to some woman. Let us denote her
by w′, i.e.

〈m′, w′〉 ∈ S

We have already shown that w prefers m′ to m. But
who does m′ prefer, w or w′?

6. Since m is the first man rejected by his valid partner
in run I, m′ has not been rejected by any valid partner
when he got engaged to w, i.e. he prefers w to w′.

7. Therefore, S is unstable. Contradiction!

Michael Gelfond TTU

Review

Let α be an algorithm defined on a set D of strings, and
T(n) be the worst-case running time of α on input of
size n.

T(n) is order f(n) (T(n) is O(f(n))) if there are constants
C and x0 such that for every x > x0, T(x) ≤ C× f(x).

We also say that f is an asymptotic upper bound of T .
Asymptotic lower bound, g, of T is defined similarly and
denoted by Ω(T).

Show that T(n) = n2 + 5n is in O(n2).

A deterministic algorithm is polynomial if it has an
asymptotic polynomial upper bound.

Michael Gelfond TTU

Problem 2: Interval Scheduling Problem

There is one resource which can be used by at most one
person at a time.

Multiple people request the use of this resource. A
request is of the form “Can I use the resource starting
at time s, until time f?”

The goal of a scheduler is to maximize the number of
requests accepted.

Michael Gelfond TTU

Modeling the Problem

Given: A finite set R = {i1 . . . , in} of names. Elements of R
are called requests. Each request i is associated with an
interval [s(i), f(i)) .

A schedule of R is a subset of R containing no
overlapping request.

Find: A best (optimal) schedule. i.e. schedule A of R such
that no schedule of R contains more requests than A.

Michael Gelfond TTU

Solution

function schedule(R0 : set of requests) : set of requests
% returns a best schedule for R0.
var R,A : set of requests

R := R0, A := ∅.

while R 6= ∅ do
1. select a request i ∈ R with earliest finish time,
2. add i to A,
3. remove from R all requests which overlap with i
(including i).

return A.

Michael Gelfond TTU

Greedy Algorithms

In our scheduling algorithm we have:

A candidate set, R from which a solution A is
created.

A selection function (earliest finish time) which, at
each step, chooses the candidate to be added to the
potential solution.

A greedy algorithm follows its selection function, never
reverses its coices, and hopes for the best.

It is your job to guarantee that the hope is justified and
a truly best solution is found.

Michael Gelfond TTU

Correctness

Lemma 1. The algorithm terminates.

Termination follows since during each step R decreases
in size.

In what follows, by A(m) and R(m) we denote the values
of A and R after the execution of the m’th step of the
loop.

Michael Gelfond TTU

Correctness

Lemma 2. The algorithm returns a schedule.

Show by induction on k that for every step k:

(a) Intervals in A(k) are pairwise disjoint.

(b) No interval in R(k) overlaps with an interval in A(k).

Base. After the first execution A(1) = {i1} and, due to
step (3), no interval in R(1) overlaps with i1 (step 3).

Inductive step: Suppose (a) and (b) hold for k = m.

A(m+ 1) = A(m)∪ {im+1} where {im+1} is selected from Rm.
By inductive hypothesis intervals in Am are pairwise
disjoint and no interval in R(m) overlaps with an
interval in A(m). Hence, intervals in A(m+ 1) are
pairwise disjoint, and, by step (3) of the algorithm, (b)
holds for k = m+ 1.

Michael Gelfond TTU

Correctness

Lemma 3. Let O = {j1, . . . , jn} be an optimal solution of
the problem and A be returned by our algorithm. Then,

|A| ≤ |O|;

For every step k of the algorithm

(∗) f(ik) ≤ f(jk).

The first condition follows immediately since O is
optimal and A is a solution (Lemma 2).
Let us prove the second condition by induction on k.
Base: k = 1 – is true by construction.
Inductive Hypothesis: (∗) holds for every k ≤ m.
Show that (∗) holds for k = m+ 1.

Michael Gelfond TTU

Correctness

Since O is a schedule we have that

(1) f(jm) ≤ s(jm+1).

By inductive hypothesis,

(2) f(im) ≤ f(jm).

(1) and (2) imply

(3) f(im) ≤ s(jm+1)

This means that at the moment of selection of im+1

interval jm+1 does not overlap with intervals in A, and
therefore belongs to R. Since the algorithm selects
interval from R with the earliest finish time, we have

(4) f(im+1) ≤ f(jm+1)

and (∗) follows by induction.
Michael Gelfond TTU

Correctness

Lemma 4. A is optimal.

Suppose it is not and there is optimal O = {j1. . . . , jn}, i.e.
O is a schedule and |O| > |A|.
Let im be the interval added to A during the last
iteration. By Lemma 3,

(1) f(im) ≤ f(jm).

Since |O| > |A|, there is jm+1 ∈ O. Since O is a schedule,

(2) f(jm) ≤ s(jm+1).

and, by (1) and (2)

(3) f(im) ≤ s(jm+1).

i.e. after the last iteration of the algorithm jm+1 ∈ R.
But, at this time, R must be empty. Contradiction.

Lemmas 2, 4 imply algorithm’s correcteness.
Michael Gelfond TTU

Time Complexity

Our scheduling algorithm traverses R twice (in steps (1)
and (3)) and hence its time complexity is n2.

Can we refine the algorithm to make its time
complexity be O(n ∗ log n)?

Step one can be reduced to sorting R and traversing it
from left to right which is O(n ∗ log n).

Instead of removing from R all intervals overlapping
with the just scheduled interval i we can simply
traverse R in search of intervals to be added to A.

This can be done as follows:

Michael Gelfond TTU

Time Complexity

Let R[1..n], A[1..n] be arrays of requests where R[k] is a
record containing k’th starting and finishing times.

1. Sort R in order of finishing time. [O(n ∗ log n) time]
2. k, i := 0

3. f := − 1 % finishing time of the last scheduled request
4. while k < n do [Linear Time]
5. k := k+ 1

6. if R[k].s ≥ f then
i := i+ 1

A[i] := R[k]

f := R[k].f

7. return A[1..i].

Michael Gelfond TTU

Problem 3: Interval Partitioning

GIVEN: A large set of identical resources and a set
R = {i1 . . . , in} of requests.

Each request i is associated with an interval [s(i), f(i)).

A request i asks for the use of one resource during the
interval [s(i), f(i)).

DO: Schedule all requests using as few resources as
possible.

Examples: Schedule classes using as few classrooms as
possible, allocate printing jobs using as few printers as
possible, etc.

Michael Gelfond TTU

Modeling the Problem:

The set R of requests (also called jobs) is defined as in
Problem 2. Resources are numbers from 1 to n.

To define a schedule we need the following notation:
Let

α : R→ [1..n]

be an assgnment of jobs to resources and

Rk = {j ∈ R : α(j) = k}

be the set of all jobs served by a resource k.

Michael Gelfond TTU

Modeling the Problem:

Mapping α : R→ [1..n] is called a schedule if

For some 0 < d ≤ n, R1, . . . , Rd is a partition of R, i.e.
R = R1 ∪ · · · ∪ Rd and
if m 6= k then Rm ∩ Rk = ∅.

For every 0 < m ≤ d, intervals requested by jobs
from Rm do not overlap.

Schedule which uses as few resources as possible is
called optimal.

Michael Gelfond TTU

Discussion

depth(R) - max number of overlapping requests in R.

Can we partition R into R1, . . . , Rd where d = depth(R)

and requests in any Ri do not overlap?

If the answer is positive then this allocation of resources
and the subsequent scheduling of jobs is optimal –
clearly, the number of resources needed is at least d.

IDEA:

1. Schedule jobs according to their starting times.

2. Divide the set of available resources into those which
are in use (occupied), had been used but are now
available (released), and not being used at all. If
possible, select next resource from released.

Michael Gelfond TTU

Pseudocode

function IntervalPartitioning(R : set of jobs)
% Returns an optimal schedule (R1, . . . , Rm) for R.
var released, occupied : resources; m : resource

m := 0; released, occupied := ∅;
1. Sort R w.r.t. starting times of its jobs.
2. for every I ∈ R do

3. Move all resources in occupied which finished
before the start of I into released.

4. if released 6= ∅ then
m := select(released);
Move m from released to occupied.

5. else m := m+ 1; % select new resource.
create Rm, set it to ∅, add m to occupied.

6. Add I to Rm.
Let jobs in Ri be served by resource i.

Michael Gelfond TTU

Proof of Correctness

• Algorithm obviously terminates after all jobs are
scheduled.
• Algorithm returns a schedule.

1. Since every I ∈ R is moved into some Ri (step 6)

R = R1 ∪ · · · ∪ Rm.

No job is served by two resources. R1 ∪ · · · ∪ Rm is a
partition.

2. No two jobs in Ri overlap. [Induction on number of
iterations]
Note that when resource m is allocated to serve I every
job served by resources in released finishes before I
starts.

Michael Gelfond TTU

Proof of Correctness

To show that the schedule R1, . . . Rm is optimal, it
suffices to show that m ≤ d.

Suppose (3) is not the case.

Then, before the allocation, every resource from 1 to d
is in occupied, i.e. every such resource is in use. But this
means that there are at least d+ 1 overlapping requests
in R which contradicts the definition of d.

Since any solution needs at least d resources, m = d,
and R1, . . . , Rm created by the algorithm is an optimal
solution.

Michael Gelfond TTU

Scheduling to minimize maximum lateness

GIVEN: Set R of requests, where each i ∈ R has
duration, ti, and deadline, di. A single, but unlimited,
resource, e.g. a processor.

Schedule maps a request i ∈ R into interval [s(i), f(i)) of
length ti such that intervals for different requests are
disjoint.

A request i is late if f(i) > di. A request’s lateness, Li is
f(i) − di if i is late and 0 otherwise.

DO: Find a schedule which

starts at a given point s;

minimizes maximum lateness, L = maxi(Li).

Basic Idea: schedule request with earliest deadline first!

Michael Gelfond TTU

Scheduling to minimize maximum lateness

min-max-lateness(R : set of requests, s : time) : schedule
var f : time % finishing time of the last scheduled job.

Sort requests in order of their deadlines: d1 ≤ · · · ≤ dn.
f := s;

For every job i from 1 to n do
s(i) := f

f(i) := s(i) + ti
f := f+ ti

return [s(i), f(i)) for every i.

Michael Gelfond TTU

Correctness (exchange argument)

idle time - time between jobs.

inversion - assignment of times to two jobs in which the
job with later deadline is scheduled first, i.e.

s(i) < s(j),

dj < di

Obviously, the schedule produced by our algorithm has
no idle time and no inversion. Optimality follows from
the following Lemmas:

Lemma 1. All schedules with no idle time and no
inversion have the same maximum lateness.

Lemma 2. There is an optimal schedule with no idle
time and no inversion.

Michael Gelfond TTU

Proof of Lemma 1

Let us compute the maximum lateness.

First notice, that two different schedules with neither
inversion nor idle time only differ in order in which jobs
with the same deadline are scheduled.

Clearly, all rearrangement of jobs with the same
deadline start and finish at the same time, say sd and
fd. Hence the maximum lateness for every
rearrangment is the same – fd − d.

Michael Gelfond TTU

Proof of Lemma 2

Let O be an optimal schedule. Clearly it has no idle
time.

Suppose it has an inversion. Then there are two
consecutively scheduled jobs, i and j such that

(1) dj < di.

Let us swap i and j and show that the maximum
lateness, L̄ of the new schedule, Ō does not exceed the
maximum lateness, L of O, i.e. Ō is still optimal.

The optimal schedule without inversion and idle time
can be, therefore, obtained by repeating swapping until
all inverse pairs are eliminated.

Michael Gelfond TTU

Proof of Lemma 2

To show that L̄ ≤ L consider a job r in O scheduled for
interval [s(r), f(r)) with lateness Lr.
The corresponding quantities in Ō will be denoted by
[s̄(r), f̄(r)), and L̄r.
The only possible increase in lateness L̄ in Ō could have
occur because of increase in lateness of i. Let us show
that this is impossible. First, by definition, f̄(i) = f(j)
and hence

(2) L̄i = f̄(i) − di = f(j) − di.

From (1) and (2) we have

(3) L̄i = f(j) − di < f(j) − dj = Lj.

Therefore,
L̄i < Lj ≤ L

and hence the swap does not increase L.
Michael Gelfond TTU

Spanning Trees

Given: Graph G = 〈V, E〉 with positive cost ce associated
with every edge e.

Definitions:
An undirected graph is a tree if it is connected and
has no cycles (recall that a cycle must include at
least two different links).
Spanning tree of G is a set T of edges such that 〈V, T〉
is a tree.
Cost of T is the sum of costs of its edges.
Minimum spanning tree of G is a spanning tree of G
with minimal cost.

Problem: Find a minimum spanning tree of G.

Number of spanning trees in a graph is O(nn).
Exhaustive search is impossible.

Michael Gelfond TTU

Kruskal’s Algorithm

kruscal(G = 〈V, E〉 : weighted graph) : set of edges
% Assumption: all costs are different
% returns a minimal spanning tree of G.

var T : set of edges

T := ∅
Sort E in increasing order of costs.
for every e ∈ E do

if T ∪ {e} has no circles then
T := T ∪ {e}

return(T).

Michael Gelfond TTU

Kruskal’s Algorithm: Cut Property

Cut Property. If S is a non-empty set of nodes different
from V and e = 〈v,w〉 is a minimum-cost edge with one
end in S and another in V \ S then every minimum
spanning tree contains e.

Proof. Let e be as above. Suppose there is a minimum
spanning tree T not containing e.

Since 〈V, T〉 is a tree, v and w are connected by a path
P = v, . . . , v1, w1, . . . w in G where e1 = 〈v1, w1〉 is the first
edge in P with one end in S and another in V \ S.

Let T1 be obtained from T by replacing e1 by e.

We will show that T1 is a spanning tree of G. Since cost
of T1 is smaller than that of T this will contradict the
minimality of T .

Michael Gelfond TTU

Kruskal’s Algorithm: Cut Property

To show that T1 is a spanning tree we need to show that

(a) Graph 〈V, T1〉 is connected.

Take two nodes x1 and x2 of V. Since T is a spanning
tree, 〈V, T〉 is connected, i.e. contains a path Q
connecting these nodes. If Q does not contain e1 it is
also a path of 〈V, T1〉 (which connects x1 and x2). If Q
contains e1 = 〈v1, w1〉, i.e. Q = 〈x1, . . . , v1, w1, . . . x2〉 then
path R = 〈x1, . . . , v1, . . . , v,w, . . . w1, . . . x2〉 in T1 connects x1
and x2.

(b) 〈V, T1〉 has no cycles.

The only cycle in 〈V, T1 ∪ {e1}〉 is the one composed of e
and P. But this cycle can not be in 〈V, T1〉 since e1 has
been removed.

Michael Gelfond TTU

Kruskal’s Algorithm: Correctness

By the Cut Property every edge added to T in the
Kruskal’s algorithm belongs to every minimum
spanning tree of G.
So, if T is a spanning tree then it is also minimum
spanning tree.
Show that it is a spanning tree, i.e. 〈V, T〉 is a tree.
Clearly, T has no cycles. Suppose it is not connected i.e.
there is set S different from ∅ and V such that nodes
from S and V \ S are not connected by edges from T .
But there is an edge from S to V \ S in G. Cheapest such
edge would have been added to T by the algorithm.
Contradiction.

Michael Gelfond TTU

Implementing Kruscal’s Algorithm

Naive implementation of the algorithm may require
|E|× |V | steps. Can we do better?

Challenge: How to check that T ∪ {e} has no cycles in
time better than |V |?

Idea: Represent T as a collection Ti1 , . . . , Tik of disjoint
sets. Design function find(u) which, for every u ∈ S
returns im such that u ∈ Tim.

Let {e = 〈v,w〉}, m = find(v) and n = find(w), and
|Tim | ≥ |Tin |.
T ∪ {e} has no cycles iff m 6= n. In this case replace Tim , Tin
by Tim = unite(Tim , Tin).

Good data structure allow log(|V |) find and constant
unite.

Michael Gelfond TTU

History

One of the early applications of graph theory to
computing. Even though the graphs in some form
appeared in math starting with Euler, the first
textbook on graph theory was published in 1935.

Similar algorithm was first published by a Czech
mathematician Boruvka (1926) in a paper
“Contribution to the solution of a problem of
economical construction of electrical networks (Czech)”.

In 1954 graph theory was sufficiently known so Kruscal
could publish his work in a mathematical journal.

Now the algorithm forms the basis for solutions of
many optimization problems.

Michael Gelfond TTU

Shortest Path in the Graph

GIVEN: directed graph G = 〈V, E〉 and the length le ≥ 0
for each edge e; starting node s.

FIND shortest path from s to each other node.

Length, l(P) of path P is the sum of the lengths of its
edges.

fringe(S) - set of all X ∈ V \ S connected to some node of
S by an edge.

Simplification: (a) determine the length of the shortest
path from s to each other node. (b) Assume that there
is a path from s to any other node in G.

Michael Gelfond TTU

Discussion

Our goal is to “serve”, i.e., compute minimal distance
from s, for each vertice of G. To do that

1. Maintain S ⊆ V such that for each u ∈ S the shortest
distance, d(u) from s to u had been already computed,
and is less or equal to d(v) for every v 6∈ S.

2. Consider set E = {〈u, v〉 : u ∈ S, v 6∈ S} and function α
defined on E such that

α(〈u, v〉) = d(u) + l(〈u, v〉),

select 〈u0, v0〉 which minimizes α, add v0 to S, and set
d(v0) to α(〈u0, v0〉).

Clearly, new S still satisfies properties from (1).

Michael Gelfond TTU

Pseudocode

Dijkstra(G : directed graph, l - length, s : node)
% returns function d(u) whose value is the shortest
% distance between s and u.

var S : set of explored nodes; function d(u)

S := {s} d(s) := 0

while S 6= V do
1. Select v0 ∈ Fringe(S) for which

d′(v) = min{u : u∈S,〈u,v〉∈G}d(u) + l(〈u, v〉)
is as small as possible.

2. d(v0) := d′(v0)

3. S := S ∪ {v0}

Return d

Michael Gelfond TTU

Second Refinement

How to represent G, S, and Fringe(S)?

G - adjacency list O(max_degree(G)).

S - a tree of nodes

An array, nodes, where nodes(v) contains a pointer to a
position of v in S (or nil if v is not there yet).

F = Fringe(F) – a priority queue with entries 〈v, key(v)〉
where at each point of the execution of the algorithm
key(v) is the length of a shortest path from s to v found
so far.

Michael Gelfond TTU

Second Refinement

S := {s} d(s) := 0

F := {〈y, key(y)〉}
where y is adjacent to s and key(y) is the
length of shortest edge from s to y.

while F 6= ∅ do
1. m := extract_minimum(F)

2. S := S ∪ {m}

3. d(m) := key(m)

4. For every edge 〈m, v〉 with v ∈ V \ S do
4a. Temp := d(m) + l〈m,v〉
4b. if v 6∈ F then insert(F, v, Temp)
4c. else if Temp < key(v) then

change_key(F, v, Temp)
return d

Michael Gelfond TTU

Divide and Conquer

A type of algorithm which breaks the input into parts,
solves each part recursively, and then combines the
solutions of these subproblems into an overal solution.

Example: computing the value of an arithmetic
expression represented by a tree, merge sort, etc.

Michael Gelfond TTU

Counting Inversions

Problem: Given a person’s preferences (for books,
movies, etc.) match them with preferences of other
people on the Web with similar interests to provide a
suggestion.

Preferences are often defined by rankings, i.e., labeling
the objects from 1 to n. So the problem is to define and
compute the distance between the rankings.

Michael Gelfond TTU

Mathematical formulation

Given: a sequence S = 〈a1, . . . , an〉 of distinct numbers.

Def: a pair i < j of indices form an inversion if ai > aj.

Find: The number of inversions in S.

Sequence 〈1, 2, 3〉 has no inversions, sequence 〈2, 1, 3〉 has
one, formed by indices 1 and 2, sequence 〈3, 2, 1〉 has
three.

Michael Gelfond TTU

Counting Inversions

Basic Idea: Sort sequences together with counting
inversions to facilitate merging.

CountInversions
Given: Sequence S = 〈a1, . . . , an〉
Return: Number of inversions in S and sorted S.
if n = 1 then return(0,S)
Divide S into two halves, A and B.

(rA, A) := CountInversion(A)

(rB, B) := CountInversion(B)

(r, S) := merge_and_count(A,B)
return(rA + rB + r, S).

Michael Gelfond TTU

Counting Inversions

Merge_and_count
Given: Sorted sequences A,B.
Return: The number of pairs X, Y such that X ∈ A, Y ∈ B
and X > Y, and sorted sequence C consisting of elements
of A and B.

var i,j : ponter, C : sequence, Count : integer
% i and j point to element ai of A and element bj of B
i, j := 1 C := ∅ Count := 0

while both lists are non-empty do
Move the smaller of two elements ai, bj to C.
if bj < ai then Count := Count+ |A|.
Advance pointer to the list from which the smaller
element was selected.

Append the remainder of the non-empty list to C.
return (Count,C).

Michael Gelfond TTU

The Algorithm Complexity

Clearly, Merge_and_count requires O(n) where
n = |A|+ |B|.

Let T(n) denote the worst-case running time on input of
size n. Let n = 2k. To get the input down to 2 we need
k = log2n levels of recursion.

First level has one merge which requires c× n steps.

On the i’th level the number of subproblems has
doubled i times, so their number is 2i. Each has input
size n/2i and takes at most c× n / 2i steps. Overall time
spent on level i is 2i × (c× n / 2i) = c× n.

Executing k levels requires c× n× log2n, i.e. the
algorithm time is O(n× log2n).

Michael Gelfond TTU

Dynamic Programming

1. Divide the problem into subproblems such that

The number of subproblems is polynomial.

The solution to the original problem can be easily
computed from solutions to the subproblems.

Subproblems can be ordered from “smallest” to
“largest” and solutions of larger are connected to
that of smaller by a recurrence relation.

2. Get rid of recursion by storying solutions of problems
from smaller to larger in an array.

Michael Gelfond TTU

Weighted Interval Scheduling

Given: n requests, each request i associated with an
interval [si, fi) and has the weight, vi. One server.

Find: A subset of mutually compatible requests with
maximum summary weight.

This time ordering intervals by the earliest finishing
time does not work. Later interval not compatible with
the selected one may have much higher weight.

First solve a simpler problem – find maximum summary
weight.

Notation: f1 ≤ f2 · · · ≤ fn; p(j) is the last interval in the
sequence which finishes before j starts, 0 if no such
interval exists.

Michael Gelfond TTU

Recursive Algorithm

Divide the problem into finding maximum weight of a
schedule containing j and that not containing j.

opt(j : requests) : weight

% Requests from 1 to j are sorted by finishing time.
% Returns weight of the optimal solution of the
% scheduling problem.
% Recurrence relation:

opt(j) = max(vj + opt(p(j)), opt(j− 1))

if j = 0 return(0).
return(max(vj + opt(p(j)), opt(j− 1))).

% Returns max of the best solution containing j
% and that not containing j.

Unfortunately has exponential number of calls. Can we
reduce this number?

Michael Gelfond TTU

Memoization [Getting rid of recursion]

The first time opt(k) is computed store the value in an
array, say M[0 . . . n].

opt(n : requests) : array

% Requests 1 . . . n sorted by finish time
% Returns M[0..n] where M[j] is the weight of
% optimal scheduling of first j requests.

var M[0..n].

M[0] := 0

for j from 1 to n do
M[j] := max(vj +M[p(j)],M[j− 1])

return(M)

Michael Gelfond TTU

Finding Optimal Solution

Find_Solution(M : array, j : index) : sequence of
requests.
% For j > 0, M[j] contains the weight of optimal solution
% for scheduling first j requests.
% Returns optimal solution for scheduling first j
% requests.

if j = 0 return([])
if vj +M[p(j)] > M[j− 1]) then

return(Find_Solution(M,p(j)) ◦ j)
return(Find_Solution(M, j− 1))

The function is in O(n).

Michael Gelfond TTU

Approximating Set of Points by a Segment

Given: A set S = {(x1, y1) . . . (xn, yn)} of points on the
coordinate plane
Find a segment of best fit.

How to define best fit, i.e., how to measure an error –
distance between S and function f(x, a, b) = ax+ b is an
interesting theoretical question.

A popular least squares method finds a and b which
minimize

R2 =

n∑
i=1

(yi − f(xi, a, b))
2

There are good algorithms for such a minimization, and
we assume that they are given.

Michael Gelfond TTU

Segmented Least Square Problem

What to do if S can only be reasonably approximated
by more than one segment?

1. Partition S into a number of segments and
approximate each segment separately.

2. Balance the number of segments in the
approximation and the quality of the fit.

In other words, fit points well using as few segments as
possible.

Michael Gelfond TTU

Formulating Segmented Least Square Problem

We order partitions by assigning penalties – the sum of
the number of segments in the partition (times some
constant C) AND the error value of the optimal line
through each segment.

The first value keeps the number of segments small.
The second ensures that each component of the
partition is accurately approximated by a segment.

Segmented Least Square Problem: Given C, find a
partition of minimum penalty.

Michael Gelfond TTU

Recurrence Relation

Sort points p1, . . . , pn with respect to X-coordinate.

opt(n) penalty of optimal approximation of p1, . . . , pn (0
if i = 0).

eij - minimum error of any line approximating pi, . . . , pj.

If pi, . . . , pn is the best last segment then

opt(n) = C+ ein + opt(i)

The recurrence relation

opt(j) = min1≤i<j(C+ eij + opt(i))

Michael Gelfond TTU

Memoization

opt(p1, . . . , pn : points) : array

% Points are sorted by X coordinate.
% Returns M[0..n] where M[j] is the minimum penalty
% for approximation of p1, . . . , pj.

var M[0..n], e[0..n, 0..n]

M[0] := 0

for every i ≤ j ≤ n do
compute minimal penalty eij for approximation of
pi, . . . , pj by one line.

for j = 1 to n do

M[j] := min1≤i<j(C+ eij +M[i])

return(M)

Michael Gelfond TTU

Subset Sum

Given: Single machine to process n job requests.
Machine is available in time interval from 0 to W.
A request i requires time wi to process.

Goal: find a schedule which keeps the machine as busy
as possible.

Equivalent formulation: Given a set of items with
non-negative weights wi and integer W find a subset S
of items such that

∑
i∈S
wi ≤W

subject to restriction above the sum is as large as
possible.

Michael Gelfond TTU

Subset Sum

opt(i,w) - solution of the problem with items 1 . . . i and
allowed weight w.

Recurrence relation:

opt(i,w) = max(opt(i− 1,w), wi + opt(i− 1,w−wi))

Michael Gelfond TTU

Subset Sum

function MaxWeight
input: items 1 . . . n, weights w1, . . . wn, max weight W
output: M[i,w] = max(

∑
k∈Swk ≤ w where S ⊆ {1, . . . , i})

var : array M[0 . . . n, 0 . . .W]

M := 0

For every i do
For every w do

if w < wi then (ith item does not fit)

M[i,w] := M[i− 1,w]

else

M[i,w] := max(M[i− 1,w], wi +M[i− 1,w−wi])

return(M)
Michael Gelfond TTU

Subset Sum

To complete the solution of the original problem
compute an array M, M := MaxWeight(P) and call
function print(n,W) defined as follows:

function print(i,w)
if i > 0 then

if M[i,w] 6=M[i− 1,w] then
display(i)

print(i− 1,w−wi)

else print(i− 1,w)

Michael Gelfond TTU

Knapsack

knapsack(n : item, W : capacity) : set of items
% items 1..n, each item i has weight wi and value vi
% Returns subset of items which maximizes the sum of
% their values subject to the capacity restriction.

function MaxVal(n : items, W : knapsack capacity) : int
Recursive algorithm to compute maximim value of
items which can be packed in a knapsack of capacity W.

if n = 0 return 0
if W < wn then return(MaxVal(n− 1,W))

return(max(MaxVal(n−1,W), vn+MaxVal(n−1,W−wn)))

Michael Gelfond TTU

Knapsack (memoization)

MaxValues(n : items, W : knapsack capacity) : array
%Create array M such that M[i,w] =MaxVal(i,w).

Set the entries of M to 0.

For every i = 1 to n do
For every w = 1 to W do

if w < wi then (ith item does not fit)

M[i,w] =M[i− 1,w]

else

M[i,w] = max(M[i− 1,w], vi +M[i− 1,w−wi])

return(M)

Michael Gelfond TTU

Knapsack (Original Problem)

To complete the solution of the original problem
compute an array M, M := MaxValues(n,W) and call
function print(n,W) defined as follows:

function print(i,w)
if i > 0 then

if w < wi then print(i− 1,w)
else

if M[i− 1,w] ≥ vi +M[i− 1,w−wi] then
print(i− 1,w)

else display(i)
print(i− 1,w−wi)

Michael Gelfond TTU

Number of Combinations

C(n, k) - number of subsets (combinations) of k-elements from
an n-element set.
Standard formulas:

C(n, k) = n!/(k!(n− k)!)

C(n, k) = n× n− 1× · · · × (n− k+ 1)/k!

and

C(n, k) = C(n− 1, k− 1) + C(n− 1, k) for 0 < k < n

C(n, 0) = C(n,n) = 1

Michael Gelfond TTU

Number of Combinations

function comb(n, k)
input: n ≥ k ≥ 0
output: C(n, k)

var matrix M[n, k] of integers

for i from 0 to n do
for j from 0 to min(i, k) do

if j = 0 or j = i then M[i, j] := 1

else M[i, j] := M[i− 1, j− 1] +M[i− 1, j]

return(M)

Michael Gelfond TTU

NP problems

A problem belongs to class NP if it can be solved in polynomial
time by a non-deterministic Turing machine.

To solve a problem such a machine non-deterministically selects
the problem’s candidate solution and checks, if it is indeed a
solution, in polynomial time.

Every problem belonging to a class P of polynomially solvable
problems also belongs to class NP. It is not known if the reverse
is true.

Figuring out if P = NP is one of the most important problems
of CS.

Michael Gelfond TTU

Polynomial Reductions and NP-complete problems

Decision problem: Given a set L of string over alphabet Σ (often
called a language) check if a string x ∈ Σ∗ belongs to L.
Let L1, L2 ⊆ Σ∗.

A polynomial function τ : Σ∗ → Σ∗ is a polynomial reduction
of L1 to L2 if for every x ∈ Σ∗, x ∈ L1 iff τ(x) ∈ L2.

A decision problem for L is NP-complete if

L belongs to NP.

Every NP problem is polynomially reducible to L.

It is easy to see that P = NP iff there is a polynomial solution
of at least one NP-complete problem.

Michael Gelfond TTU

Boolean Satisfiability (SAT)

A literal is a boolean variable or its negation.

Clause is a set of literals. A clause C is satisfied by an
assignment of truth values to variables if this assignment makes
at least one elements of C true.

Formula is a set of clauses. Formula F is satisfied by a truth
assignment I if all of its clauses are satisfied by I. Assignment I
satisfying F is called a model of F.

Problem: Check if a given formula is satisfiable, i.e. has a
model. (Here our language L consists of all satisfiable formulas).

Michael Gelfond TTU

SAT

It is easy to prove that SAT is an NP problem.

The corresponding non-deterministic Turing Machine will
non-deterministically select an assignment
I = {X1 = v1, . . . , Xn = vn} of the truth values to the variables of
F and checks if I is a model of F.

The latter can be done in polynomial time as follows:

repeat
Select Xi = vi.
Remove all clauses containing a literal l formed by Xi
which is true under this assignment.
Remove from the clauses of F all remaining
occurrences of such literals.

until F = ∅∨ { } ∈ F.
if F = ∅ return true else return false.

Michael Gelfond TTU

SAT

In the early 70s of the last century Cook and Levin
independently established that SAT is an NP- complete
problem.

Despite the apparent absence of a polynomial algorithm for
solving SAT its instances are frequently solved in many
practical applications (including planning, diagnostics, decision
support systems, etc.) by programs called SAT -solvers.

In the last 20 years SAT -solvers moved from solving problems
with 100 variables and 200 clauses to 1, 000, 000+ variables and
5, 000, 000+ clauses.

Michael Gelfond TTU

SAT -solvers – Basic Algorithm

Partial interpretation of a formula F is a mapping I of a subset
of its variables to the truth values.

function SAT
input: Formula F0 and partial interpretation I0.
output: 〈I, true〉 where I is a model of F0 which extends I0.

〈I0, false〉 if no such model exists.

Uses function Cons(F, I) which expands I by the assignment of
variables which must be true to satisfy F and simplifies F
accordingly. If there are no expansions of I returns false.

Michael Gelfond TTU

Basic Algorithm (continued)

var F : formula; I : partial interpretation; X : boolean.

F := F0; I := I0;

if Cons(F, I) = false then
return 〈I0, false〉.

〈F, I〉 := Cons(F, I).

if F = ∅ return 〈I, true〉.
select a boolean variable p from F undefined in I.
〈I, X〉 := SAT(F ∪ {{p}}, I).
if X=true return 〈I, X〉.
return SAT(F ∪ {{¬p}}, I).

Michael Gelfond TTU

Computing Consequences

function Cons(F, I)
Returns 〈F′, I′〉 such that a model of F contains I iff it is a model
of F′ which contains I′.
Return false if no such F′, I′ exist.

while F contains a clause of the form {l} do
Remove from F all clauses containing l.
Remove from F all occurrences of l where p = ¬p, ¬p = p.
I := I ∪ {l}

if ∅ ∈ F return false
return 〈F, I〉.

Michael Gelfond TTU

Tracing SAT

Let I = ∅ and F = {{X1}, {¬X1, X2, X3}, {¬X1, X4}}.

Cons(F, I) returns F = {{X2, X3}} and I = {X1, X4}

Suppose the algorithm non-deterministically selects X2 and
calls SAT({{X2, X3}, {X2}}, {X1, X4}).

The new call to SAT returns I = {X1, X4, X2} and F = ∅.

The second termination condition is satisfied and SAT returns
〈{X1, X4, X2}, true〉.

Michael Gelfond TTU

Comments on Actual Implementations

Developers of SAT-solvers found many ways to improve solvers’
efficiency, including

Smart heuristics which allow selection of a good p.

Learning clauses containing information about previous
failures and adding it to the formula. This leads to a smart
backtracking.

Occasional random restarting of search to avoid being
stuck in a wrong path.

Smart data structurs.

Automatic tuning of heuristics for particular instances.

Michael Gelfond TTU

3-SAT is NP-complete.

SAT restricted to formulas whose clauses contain at most three
literal is called 3-SAT .

To show that it is NP-complete we’ll define a polynomial
reduction τ from SAT to 3-SAT .

For every clause C = {λ1, . . . , λn}, τ(C) consists of clauses

{λ1, λ2, Y1},
{¬Y1, λ3, Y2},
. . .

{¬Yi−2, λi, Yi−1},
. . .

{¬Yn−3, λn−1, λn}}

where Ys are new variables.

Michael Gelfond TTU

3-SAT is NP-complete (continued)

Intuitively, Y1 says that at least one λi where i ≥ 3 must be
true.

{¬Yi−2, λi, Yi−1} says that if Yi−2 is true (i.e. at least one λk with
k ≥ i is true) then λi or some literal with index greater than i is
true.

Finally,

τ(F) =def {τ(C) : C ∈ F}

Michael Gelfond TTU

3-SAT is NP-complete (continued)

Clearly, τ is polynomial.

To complete the proof we need to show that

F ∈ SAT iff τ(F) ∈ 3-SAT

We divide the proof into two parts:

(A) If F ∈ SAT then τ(F) ∈ 3-SAT .

(B) If τ(F) ∈ 3-SAT then F ∈ SAT .

Michael Gelfond TTU

Part A

Suppose I is a model of F. Let C be an arbitrary clause of F. To
define a satisfying assignment of τ(C) let us assume that λi is
the first literal in C made true by I and expand I as follows:

Set variables Y1, . . . , Yi−2 to true.

Set variables Yi−1, . . . , Yn−3 to false.

Clearly, the result is a model of τ(C). Repeat the process for all
C’s from F. Since all the new variables in different clauses are
different the resulting assignment is a model of τ(C).

Michael Gelfond TTU

Part B

Suppose I is a model of τ(F). It is not difficult to show that I is
also a model of F.

Consider arbitrary C ∈ F and show that at least one λi ∈ C is
satisfied by I.

Suppose it is not the case.

Then, to satisfy the first n− 3 clauses of τ(C), I must set
Y1, . . . , Yn−3 to true. But this would mean that the last clause is
not satisfied. Contradiction.

The assumption is false, I satisfies C and, hence, F.

Michael Gelfond TTU

MaxSat is NP-complete

MaxSat: Given a set F of clauses and a natural number K check
if there is a truth assignment which satisfies at least K clauses
of F.

To show that MaxSat is NP-complete consider a mapping τ
which maps a boolean formula F to a pair 〈F, k〉 where k is the
number of clauses in F.

Clearly, τ is polynomial and F ∈ SAT iff τ(F) ∈MaxSat.

τ is a polynomial reduction and hence MaxSat is NP-complete.

Michael Gelfond TTU

Other NP-complete problems

Hamiltonian Cycle: Given a graph G is there a cycle which
passes through each node of G exactly once?

Independent Set: Given an undirected graph G = (V, E) and an
integer K ≥ 2, is there a subset C of V such that |C| ≥ K and no
two edges of C are connected by an edge from E?

3-coloring: Given an undirected graph G = (V, E) can we color
the nodes in three different colors so that no nodes connected
by an edge are of the same color?

Michael Gelfond TTU

Fake-Coin Problem

Among n identically looking coins one is fake, i.e. is lighter
than a regular coin. Design an efficient algorithm to determine
which coin is fake using a balance scale.

function fake(set S of coins)
% S contains one fake coin % return the fake coin
Divide S into two halfs, S1 and S2 with possibly one coin, c left
on the table.
If weight(S1) = weight(S2) then return(c).
If weight(S1) < weight(S2) then return(fake(weight(S1)).
return(fake(weight(S2)).

Michael Gelfond TTU

Fake-Coin Problem

W(n) – number of weighs needed to find the fake coin in a set
of n coins.

W(1) = 0

W(n) =W(bn/2c) + 1 for n > 1

Solve for n = 2k.
W(n) =W(2k) =W(2k−1) + 1 =W(2k−2) + 1+ 1 = k+ 1 =

log2(n) + 1

Check:
W(2× 2n−1) = log2(2) + log2(2n−1) =W(bn/2c) + 1

Michael Gelfond TTU

Fake-Coin Problem

What if we divide into three parts, S1, S2, S3?
1. No coin remains. Find the lightest, S (one weighing) and call
fake(S)

2. One coin, c, remains.
If weight(S1) = weight(S2) then

select c1 from S1
if weight(c1) > weight(c) then return(c)
return(fake(S3))

etc.
Reccurrence Relation:

W(n) =W(bn/3c) + 3 for n > 3

Since log3 < log2 this method is faster. (8 versus 13 for
n = 10000)

Michael Gelfond TTU

Evaluating a polynomial

Given: p(X) = anXn + an−1Xn−1 + . . . a0 and the value, x of X.

Efficiently compute: p(x).

A good representation of p(X) is obtained by successively
taking X as a common factor from remaining polynomials of
diminishing degrees (Horner Rule):

p(X) = 2X4 − X3 + 3X2 + X− 5 =

X(2X3 − X2 + 3X+ 1) − 5 =

X(X(2X2 − X+ 3) + 1) − 5 =

X(X(X(2X− 1) + 3) + 1) − 5 =

Substantially decreases the number of operations.

Michael Gelfond TTU

Evaluating a polynomial

horner(P[0..n], x)

P[0..n] = (a0, . . . , an)

V := P[0]

for i from n− 1 to 0 do
V := x× V + P[i]

Michael Gelfond TTU

Computing exponentiation

Let n = bk . . . b0 be a binary string representing a positive
integer n and p(x) = bkxk + · · ·+ bixi + · · ·+ b0. Clearly,
n = p(2)

Michael Gelfond TTU

Computing an

Horner rule for p(2):
V := 1

for i from k− 1 to 0 do
V := 2V + bi

Computing ap(2):
aV := a1

for i from k− 1 to 0 do
aV := a2V+bi

Michael Gelfond TTU

Computing an

a2V+bi = a2V × abi = (aV)2 × abi =
(aV)2 if bi = 0; (aV)2 × a otherwise

V := a

for i from k− 1 to 0 do
V := V × V
if bi = 1 then V := V × a
return(V)

Michael Gelfond TTU

Hospital Residency

We use variable h for hospitals and s for student.

function match
while ∃ h (open_slot(h) 6= 0) do

1 Select a hospital h with an open slot.
2 let h offer position to highest-ranked student s left
on the list.

3 if s is free let s accept and decrease open_slot(h)
otherwise

4 if s prefers h to h′ to which s is committed let her
break the engagement and accept h’s proposal;
decrease open_slot(h) and increase open_slot(h′).

return the set of all engaged pairs.

Michael Gelfond TTU

Minimum Bottleneck Spanning Tree (Ch4, num 9)

Given: Spanning tree T with positive and distinct costs
of edges.

Bottleneck of T is the edge with the greatest cost.

Question 1: Is every minimum-bottleneck spanning tree
of G also a minimum spanning tree of G?

NO. Consider graph with nodes a, b, c, and d. Every
pair of nodes is connected by an edge. c(a, b) = 8,
c(a, c) = 6, c(b, d) = 10, c(c, d) = 12, c(c, b) = 2, c(a, d) = 11.
Min-bottlneck = (c, a, b, d), Min-spanning = (d, c, b, a).

Michael Gelfond TTU

Chapter 6, Problem 10

Given: n minutes, two computers a and b, ai - value of
running machine a during minute i. Similarly for bi.

Find: Use the computers to run your job to achieve
maximum value. Constraints: Job can run on one
machine at any given minute. A minute is required to
change the machine.

opt(i : minutes) - best value for job allocation during
first i minutes.
opt(i : minutes, C : computer) - best value for job
allocation during first i minutes which ends in job being
allocated to C.
opt(i) = max(opt(i, a), opt(i, b))

opt(i, a) = ai +max(opt(i− 1, a), opt(i− 2, b))

Michael Gelfond TTU

Chapter 6, Problem 10

opt(n : min) : time

var M[0..n, a..b] : time
M[0, a],M[0, b] := 0

M[1, a] := a1
M[1, b] := b1
For i = 2 to n do
M[i, a] := ai +max(M[i− 1, a],M[i− 2, b])

M[i, b] := bi +max(M[i− 1, b],M[i− 2, a])

return max(M[n, a],M[n, b])

Michael Gelfond TTU

Chapter 6, Problem 10

output_plan(M)

% outputs optimal allocation for n minutes, n ≥ 0
if M[n, a] > M[n, b] then out(M,n,a)
else out(M,n,b)

out(M, i,C)

% outputs optimal allocation for i minutes which ends in
% machine C; C̄ stands for “the other machine”.
if i > 0 then print(C, at, i)
if i > 1 then

if M[i− 1, C] > M[i− 2, C̄] then out(M, i− 1, C)
else out(M, i− 2, C̄)

Michael Gelfond TTU

Chapter 6, Problem 11

Given: a sequence 〈s1, . . . , sn〉 where i is a week and si is a
number of pounds to be shiped in this week.

Do: For every i schedule company A or company B to ship si.

cost(A, i) = r× si

cost(B, i) = c

Constraints: A contract with B must be made in blocks of four
consequitive weeks. Ensure minimal cost.

Michael Gelfond TTU

Chapter 6, Problem 11

To find minimal cost divide the problem of scheduling
shipments for i weeks into two. In one, the last shipment is
done by A, in the other one – by B.

Recurrence relation:

if i− 4 > 0 then

opt(i) = min(opt(i− 1) + r× si, opt(i− 4) + 4× c)

else
opt(i) = r× s1 + · · ·+ r× si.

Michael Gelfond TTU

Chapter 6, Problem 11

function opt(i : index) : cost

var M[0..i].

M[0] := 0

for j from 1 to i do
if j− 4 > 0 then

M[j] := min(M[j− 1] + r× sj,M(j− 4) + 4× c)
etc
return(M)

Michael Gelfond TTU

