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Our goal is to overcome some of the limitations of the earlier work.The existing formalizations of action in logic programming are adequate foronly the simplest kind of temporal reasoning|\temporal projection." In atemporal projection problem, we are given a description of the initial stateof the world, and use properties of actions to determine what the worldwill look like after a series of actions is performed. Moreover, the existingformalizations can be used for temporal projection only in the cases whenthe given description of the initial state is complete. The reason for thatis that these formalizations use the semantics of logic programming whichautomatically apply the \closed world assumption" to each predicate.We are interested here in temporal reasoning of a more general kind,when the values of some uents1 in one or more situations are given, and thegoal is to derive other facts about the values of uents. Besides temporalprojection, this class of reasoning problems includes, for instance, the caseswhen we want to use information about the current state of the world foranswering questions about the past.2The view of logic programming accepted in this paper is strictlydeclarative. The adequacy of a representation of a body of knowledge ina logic programming language means, to us, adequacy with respect to thedeclarative semantics of that language. In fact, the language of \extendedlogic programs" used in this paper is a subset of the system of default logicfrom [30], and our work can be viewed as a development of the approachto temporal reasoning based on nonnormal defaults [25]. The possibilityof using the logic programs proposed in this paper for the automation oftemporal reasoning, based on program transformations and the XOLDTNFmetainterpreter [4], is demonstrated in the forthcoming paper [20].Two parts of this paper may be of more general interest.First, we introduce here a simple declarative language for describingactions, called A. Traditionally, ideas on representing properties of actionsin classical logic or nonmonotonic formalisms are explained on speci�cexamples, such as the \Yale shooting problem" from [14]. Competing1A uent is something that may depend on the situation, as, for instance, the locationof a moveable object [24]. In particular, propositional uents are assertions that can betrue or false depending on the situation.2One possible way to represent reasoning about the past is to treat it as fundamentallydi�erent from temporal projection, and interpret it as \explanation" and \abduction" [33].Our approach is more symmetric; we treat both forms of reasoning as deductive.2



approaches are evaluated and compared in terms of their ability to handlesuch examples. We propose to supplement the use of examples by a di�erentmethod. A particular methodology for representing action can be formallydescribed as a translation from A, or from a subset or a superset of A, intoa \target language"|for instance, into a language based on classical logic oron circumscription, or into a logic programming language.Our method for describing properties of actions in logic programmingis presented here as a translation from A into the language of extendedlogic programs, and its soundness is the main technical result of the paper.A counterexample is given showing that the translation is incomplete. Apossible way of achieving completeness is discussed in the last section.Second, the proof of the main theorem depends on a relationship betweenstable models [11] and signings [18], that may be interesting as a part of thegeneral theory of logic programming.The language A is introduced in Section 2, and Section 3 is a brief reviewof extended logic programs. Our translation from A into logic programmingis de�ned in Section 4, and the soundness theorem is stated in Section 5.Section 6 contains the lemmas that relate stable models to signings, and inSection 7 the proof of the soundness theorem is presented.2 A Language for Describing ActionsA description of an action domain in the language A consists of \proposi-tions" of two kinds. A \value proposition" speci�es the value of a uent ina particular situation|either in the initial situation, or after performing asequence of actions. An \e�ect proposition" describes the e�ect of an actionon a uent.We begin with two disjoint nonempty sets of symbols, called uent namesand action names. A uent expression is a uent name possibly preceded by:. A value proposition is an expression of the formF after A1; : : : ;Am; (1)where F is a uent expression, and A1,: : :,Am (m � 0) are action names. Ifm = 0, we will write (1) as initially F:3



An e�ect proposition is an expression of the formA causes F if P1; : : : ; Pn; (2)where A is an action name, and each of F;P1; : : : ; Pn (n � 0) is a uentexpression. About this proposition we say that it describes the e�ect of Aon F , and that P1; : : : ; Pn are its preconditions. If n = 0, we will drop if andwrite simply A causes F:A proposition is a value proposition or an e�ect proposition. A domaindescription, or simply domain, is a set of propositions (not necessarily �nite).Example 1. The Fragile Object domain, motivated by an example from[32], has the uent names Holding , Fragile and Broken, and the action Drop.It consists of two e�ect propositions:Drop causes :Holding if Holding ;Drop causes Broken if Holding ;Fragile:Example 2. The Yale Shooting domain, motivated by the example from[14] mentioned above, is de�ned as follows. The uent names are Loadedand Alive ; the action names are Load, Shoot and Wait . The domain ischaracterized by the propositionsinitially :Loaded;initially Alive ;Load causes Loaded;Shoot causes :Alive if Loaded;Shoot causes :Loaded:Example 3. The Murder Mystery domain, motivated by an example from[2], is obtained from the Yale Shooting domain by substituting:Alive after Shoot;Wait (3)for the proposition initially :Loaded.4



Example 4. The Stolen Car domain, motivated by an example from [16],has one uent name Stolen and one action name Wait , and is characterizedby two propositions: initially :Stolen ;Stolen afterWait;Wait ;Wait:To describe the semantics of A, we will de�ne what the \models" of adomain description are, and when a value proposition is \entailed" by adomain description.A state is a set of uent names. Given a uent name F and a state �, wesay that F holds in � if F 2 �; :F holds in � if F 62 �. A transition functionis a mapping � of the set of pairs (A;�), where A is an action name and �is a state, into the set of states. A structure is a pair (�0;�), where �0 is astate (the initial state of the structure), and � is a transition function.For any structure M and any action names A1; : : : ; Am, by MA1;:::;Am wedenote the state �(Am;�(Am�1; : : : ;�(A1; �0) : : :));where � is the transition function of M , and �0 is the initial state of M . Wesay that a value proposition (1) is true in a structure M if F holds in thestate MA1 ;:::;Am, and that it is false otherwise. In particular, a proposition ofthe form initially F is true in M i� F holds in the initial state of M .A structure (�0;�) is a model of a domain description D if every valueproposition from D is true in (�0;�), and, for every action name A, everyuent name F , and every state �, the following conditions are satis�ed:(i) if D includes an e�ect proposition describing the e�ect of A on F whosepreconditions hold in �, then F 2 �(A;�);(ii) ifD includes an e�ect proposition describing the e�ect of A on :F whosepreconditions hold in �, then F 62 �(A;�);(iii) if D does not include such e�ect propositions, then F 2 �(A;�) i�F 2 �.It is clear that there can be at most one transition function � satisfyingconditions (i){(iii). Consequently, di�erent models of the same domain5



description can di�er only by their initial states. For instance, the FragileObject domain (Example 1) has 8 models, whose initial states are the subsetsof fHolding ;Fragile;Brokeng;in each model, the transition function is de�ned by the equation�(Drop; �) = � � n fHoldingg [ fBrokeng; if Holding ;Fragile 2 �,� n fHoldingg; otherwise.A domain description is consistent if it has a model, and complete if it hasexactly one model. The Fragile Object domain is consistent, but incomplete.The Yale Shooting domain (Example 2) is complete; its only model is de�nedby the equations�0 = fAliveg;�(Load; �) = � [ fLoadedg;�(Shoot; �) = � � n fLoaded;Aliveg; if Loaded 2 �,�; otherwise,�(Wait; �) = �:The Murder Mystery domain (Example 3) is complete also; it has the sametransition function as Yale Shooting, and the initial state fLoaded;Aliveg.The Stolen Car domain (Example 4) is inconsistent.A value proposition is entailed by a domain description D if it is true inevery model of D. For instance, Yale Shooting entails:Alive after Load;Wait;Shoot:Murder Mystery entails, among others, the propositionsinitially Loadedand :Alive after Wait;Shoot :Note that the last proposition di�ers from (3) by the order in which the twoactions are executed. This example illustrates the possibility of reasoningabout alternative \possible futures" of the initial situation.The language A is adequate for formalizing several interesting domains.Note that the domains from Examples 1{3, although very simple, have been6



actually proposed in the literature as counterexamples demonstrating theinadequacy and limitations of some earlier approaches to formalizing action.In many respects, however, the expressive power of A is rather limited. Someways of extending A are mentioned in Section 8.The entailment relation of A is nonmonotonic, in the sense that addingan e�ect proposition to a domain description D may nonmonotonicallychange the set of propositions entailed by D. (This cannot happen whena value proposition is added.) For this reason, a modular translation fromA into another declarative language (that is, a translation that processespropositions one by one) can be reasonably adequate only if this otherlanguage is nonmonotonic also.3 Extended Logic ProgramsRepresenting incomplete information in traditional logic programming lan-guages is di�cult. Given a ground query, a traditional two-valued logicprogramming system can produce only one of two answers, yes or no; it willnever tell us that the truth value of the query cannot be determined on thebasis of the information included in the program.Extended logic programs, introduced in [12], are, in this sense, di�erent.The language of extended programs distinguishes between negation as failurenot and classical negation :. The expression :A, where A is an atom,means, intuitively, \A is false"; the expression not A is interpreted as \thereis no evidence that A is true." There is a clear di�erence between these twoassertions if the program gives no information about the truth value of A.The general form of an extended rule isL0  L1; : : : ; Lm;not Lm+1; : : : ;not Ln; (4)where each Li is a literal, that is, an atom possibly preceded by :.An extended program is a set of such rules. Here is an example:p;:q p;r :p;t :q;not s;u not :u: (5)7



Intuitively, these rules say:p is true3;q is false if p is true;r is true if p is false;t is true if q is false and there is no evidence that s is true;u is true if there is no evidence that it is false.The answers that an implementation of this language is supposed to giveto the ground queries are: p : yes;q : no;r : unknown;s : unknown;t : yes;u : yes:The semantics of extended logic programs de�nes when a set of groundliterals is an answer set of a program [12]. A rule with variables is treated asshorthand for the set of its ground instances. For extended programs withoutvariables, answer sets are de�ned in two steps.First, let � be an extended program without variables that doesn'tcontain not . The answer set of � is the smallest set S of ground literalssuch that(i) for any rule L0  L1; : : : ; Lm from �, if L1; : : : ; Lm 2 S, then L0 2 S;(ii) if S contains a pair of complementary literals, then S is the set of allground literals.Now let � be any extended program without variables. For any set S ofground literals, let �S be the extended program obtained from � by deleting(i) each rule that has an expression not L in its body with L 2 S, and(ii) all expressions of the form not L in the bodies of the remaining rules.Clearly, �S doesn't contain not , so that its answer set is already de�ned. Ifthis answer set coincides with S, then we say that S is an answer set of �.8



It is easy to check, for instance, that the program (5) has one answer set,fp;:q; t; ug.The answer sets of a program can be easily characterized in terms ofdefault logic. We will identify the rule (4) with the defaultL1 ^ : : : ^ Lm : Lm+1; : : : ; Ln = L0 (6)(L stands for the literal complementary to L). Thus every extended programcan be viewed as a default theory. The answer sets of a program are simplyits extensions in the sense of default logic, intersected with the set of groundliterals ([12], Proposition 3).Two other approaches to the semantics of logic programs with two kindsof negation are proposed in [29] and [28]. In the context of this paper, theycan be shown to lead to the same result as the answer set semantics.4 Describing Actions by Logic ProgramsNow we are ready to de�ne the translation � from A into the language ofextended programs.About two di�erent e�ect propositions we say that they are similar ifthey di�er only by their preconditions. Our translation method is de�nedfor any domain description that does not contain similar e�ect propositions.This condition prohibits, for instance, combining in the same domain suchpropositions as Shoot causes :Alive if Loaded;Shoot causes :Alive if VeryNervous:(VeryNervous refers to the victim, of course|not to the gun.)Let D be a domain description without similar e�ect propositions. Thecorresponding logic program �D uses variables of three sorts: situationvariables s; s0; : : :, uent variables f; f 0; : : :, and action variables a; a0; : : :.4Its only situation constant is S0; its uent constants and action constants4Using a sorted language implies, �rst of all, that all atoms in the rules of the programare formed in accordance with the syntax of sorted predicate logic. Moreover, when wespeak of an instance of a rule, it will be always assumed that the terms substituted forvariables are of appropriate sorts. 9



are, respectively, the uent names and action names of D. There are alsosome predicate and function symbols; the sorts of their arguments and valueswill be clear from their use in the rules below.The program �D will consist of the translations of the individualpropositions from D and the four standard rules:Holds(f;Result(a; s)) Holds(f; s);not Noninertial (f; a; s);:Holds(f;Result(a; s)) :Holds(f; s);not Noninertial (f; a; s); (7)Holds(f; s) Holds(f;Result(a; s));not Noninertial (f; a; s);:Holds(f; s) :Holds(f;Result(a; s));not Noninertial (f; a; s): (8)These rules are motivated by the \commonsense law of inertia," according towhich the value of a uent after performing an action is normally the sameas before. The rules (7) allow us to apply the law of inertia in reasoning\from the past to the future": the �rst|when a uent is known to be truein the past, and the second|when it is known to be false. The rules (8)play the same role for reasoning \from the future to the past." The auxiliarypredicate Noninertial is essentially an \abnormality predicate" [22].Now we will de�ne how � translates value propositions and e�ectpropositions. The following notation will be useful: For any uent nameF , jF j is F; j:F j is F;and, if t is a situation term, Holds(:F; t) stands for :Holds(F; t). The lastconvention allows us to write Holds(F; t) even when F is a uent namepreceded by :. Furthermore, if A1,: : :,Am are action names, [A1; : : : ;Am]stands for the termResult(Am;Result(Am�1; : : : ;Result(A1; S0) : : :)):It is clear that every situation term without variables can be represented inthis form.The translation of a value proposition (1) isHolds(F; [A1; : : : ;Am]): (9)For instance, �(initially Alive) isHolds(Alive ; S0);10



and �(:Alive after Shoot) is:Holds(Alive ;Result(Shoot; S0)):The translation of an e�ect proposition (2) consists of 2n + 2 rules. The�rst of them isHolds(F;Result(A; s)) Holds(P1; s); : : : ;Holds(Pn; s): (10)It allows us to prove that F will hold after A, if the preconditions are satis�ed.The second rule isNoninertial (jF j; A; s) not Holds(P1; s); : : : ;not Holds(Pn; s) (11)(Holds(Pi; s) is the literal complementary to Holds(Pi; s).) It disables theinertia rules (7), (8) in the cases when f can be a�ected by a. Without thisrule, the program would be contradictory: We would prove, using a rule ofthe form (10), that an unloaded gun becomes loaded after the action Load,and also, using the second of the rules (7), that it remains unloaded!Note the use of not in (11). We want to disable the inertia rules notonly when the preconditions for the change in the value of F are knownto hold, but whenever there is no evidence that they do not hold. If, forinstance, we do not know whether Loaded currently holds, then we do notwant to conclude by inertia that the value of Alive will remain the same afterShoot . We cannot draw any conclusions about the new value of Alive . If wereplaced the body of (11) by Holds(P1; s); : : : ;Holds(Pn; s), the translationwould become unsound.Besides (10) and (11), the translation of (2) contains, for each i (1 � i �n), the rules Holds(Pi; s) Holds(F; s);Holds(F;Result(A; s)) (12)and Holds(Pi; s) Holds(F;Result(A; s));Holds(P1; s); : : : ;Holds(Pi�1; s);Holds(Pi+1; s); : : : ;Holds(Pn; s): (13)The rules (12) justify the following form of reasoning: If the value of F haschanged after performing A, then we can conclude that the preconditions11



were satis�ed when A was performed. These rules would be unsound in thepresence of similar propositions. The rules (13) allow us to conclude that aprecondition was false from the fact that performing an action did not leadto the result described by an e�ect axiom, while all other preconditions weretrue.We will illustrate the translation process by applying it to Yale Shooting(Example 2). The translation of that domain includes, in addition to (7) and(8), the following rules:Y 1. :Holds(Loaded; S0).Y 2. Holds(Alive ; S0).Y 3. Holds(Loaded;Result(Load; s)).Y 4. Noninertial (Loaded;Load; s).Y 5. :Holds(Alive ;Result(Shoot ; s)) Holds(Loaded; s).Y 6. Noninertial (Alive ;Shoot; s) not :Holds(Loaded; s).Y 7. Holds(Loaded; s) Holds(Alive ; s);:Holds(Alive;Result(Shoot ; s)).Y 8. :Holds(Loaded; s) Holds(Alive;Result(Shoot ; s)).Y 9. :Holds(Loaded;Result(Shoot ; s)).Y 10. Noninertial (Loaded;Shoot; s).It is instructive to compare this set of rules with the formalization of YaleShooting given by Apt and Bezem [1], who were only interested in temporalprojection problems, and did not use classical negation. Instead of our fourinertia rules, they have one, corresponding to the �rst of the rules (7). Inaddition, their program includes counterparts of Y 2, Y 3, Y 5 and Y 6. It doesnot tell us whether Loaded holds in the initial situation, but the negativeanswer to this question follows by the closed world assumption. Their rulecorresponding to Y 5 does not have : in the head, of course; instead, thenew uent Dead is used. In their counterpart of Y 6, the combination not :is missing; this does not lead to any di�culties, because the closed worldassumption is implicitly postulated. 12



5 Soundness TheoremWe say that a ground literal L is entailed by an extended logic program, ifit belongs to all its answer sets (or, equivalently, to all its extensions in thesense of default logic). Using this notion of entailment and the entailmentrelation for the language A introduced in Section 2, we can state a resultexpressing the soundness of the translation �.Soundness Theorem. LetD be a domain description without similar e�ectpropositions. For any value proposition P , if �D entails �P , then D entailsP . For an inconsistent D, the statement of the soundness theorem is trivial,because such D entails every value proposition. For consistent domaindescriptions, the statement of the theorem is an immediate consequence ofthe following lemma, which will be proved in Section 7:Soundness Lemma. Let D be a consistent domain description withoutsimilar e�ect propositions. There exists an answer set Z of �D such that,for any value proposition P , if �P 2 Z then D entails P .Note that the lemma asserts the possibility of selecting Z uniformly forall P ; this is more than is required for the soundness theorem.The set Z from the statement of the lemma is obviously consistent,because a consistent domain description cannot entail two complementaryvalue propositions. Consequently, if D is consistent and does not includesimilar value propositions, then �D has a consistent answer set.The converse of the soundness theorem does not hold, so that thetranslation � is incomplete. This following simple counterexample belongsto Thomas Woo (personal communication). Let D be the domain with oneuent name F and one action name A, characterized by two propositions:F after A;A causes F if F:It is clear that D entails initially F . But the translation of this proposition,Holds(F; S0), is not entailed by �D. Indeed, it is easy to verify that the setof all positive ground literals other than Holds(F; S0) is an answer set of �D.13



6 Answer Sets and SigningsTo prove the soundness lemma, we need the following de�nition. Let � be ageneral logic program (that is, an extended program that does not containclassical negation). A signing for � is any set S of ground atoms such that,for any ground instanceB0  B1; : : : ; Bm;not Bm+1; : : : ;not Bnof any rule from �, eitherB0; B1; : : : ; Bm 2 S; Bm+1; : : : ; Bn 62 Sor B0; B1; : : : ; Bm 62 S; Bm+1; : : : ; Bn 2 S:5For example, fpg is a signing for the programp not q; q not p; r q:In this section we show that the answer sets of a general program �which has a signing S can be characterized in terms of the �xpoints of amonotone operator. Speci�cally, for any set X of ground atoms, let �X bethe symmetric di�erence of X and S:�X = (X n S) [ (S nX):Obviously, � is one to one. Moreover, it is clear that � is an involution:�2X = f[(X n S) [ (S nX)] n Sg [ fS n [(X n S) [ (S nX)]g= (X n S) [ (S \X)= X:We will de�ne a monotone operator � such that any X is an answer set of �if and only if �X is a �xpoint of �.Recall that, for general logic programs, the notion of an answer set (or\stable model") can be de�ned by means of the following construction [11].Let � be a general logic program, with every rule replaced by all its groundinstances. The reduct �X of � relative to a setX of ground atoms is obtainedfrom � by deleting5This is slightly di�erent from the original de�nition [18].14



(i) each rule that has an expression of the form not B in its body withB 2 X, and(ii) all expressions of the form not B in the bodies of the remaining rules.Clearly, �X is a positive program, and we can consider its \minimalmodel"|the smallest set of ground atoms closed under its rules. If this set coincideswith X, then X is an answer set of �.This condition can be expressed by the equation X = ��X , where � isthe operator that maps any positive program to its minimal model.Let S be a signing for �. The operator � is de�ned by the equation�X = ����X :Lemma 1. A setX of ground atoms is an answer set of � i� �X is a �xpointof �.Proof. By the de�nition of �, �X is a �xpoint of � i�����2X = �X:Since � is one-to-one and an involution, this is equivalent to��X = X:Note that, since � is an involution, Lemma 1 can be also stated as follows:X is an answer set of � i� X = �Y for some �xpoint Y of �.Lemma 2. The operator � is monotone.Proof. Let �1 be the set of all rules from � whose heads belong to S, andlet �2 be the set of all remaining rules. Clearly, for any X,�X = �X1 [�X2 :Since S is a signing for �, all atoms occurring in �X1 belong to S, and allatoms occurring in �X2 belong to the complement of S. Consequently, �X1and �X2 are disjoint, and ��X = ��X1 [ ��X2 :15



Furthermore, for any expression of the form not B occurring in �1, B doesnot belong to S; consequently, �X1 = �XnS1 :Similarly, for any expression of the form not B occurring in �2, B belongsto S, so that �X2 = �X\S2 :Consequently, for every X,��X = ��XnS1 [ ��X\S2 :In particular, ���X = ���XnS1 [ ���X\S2 :It is clear from the de�nition of � that�X n S = X n S;�X \ S = S nX:We conclude that ���X = ��XnS1 [ ��SnX2 :By the choice of �1 and �2, ��XnS1 is contained in S, and ��SnX2 is disjointwith S. Consequently, ���X n S = ��SnX2 ;S n ���X = S n ��XnS1 :Hence�X = ����X = (���X n S) [ (S n ���X) = ��SnX2 [ (S n ��XnS1 ):Since � is monotone, and the reduct operators X 7! �Xi are antimonotone,it follows that � is monotone.Having proved Lemmas 1 and 2, we can use properties of the �xpoints ofmonotone operators given by the Knaster-Tarski theorem [34] to study theanswer sets of a program with a signing. The Knaster-Tarski theorem asserts,for instance, that every monotone operator has a �xpoint; this gives a new,and more direct, proof of the fact that every general program with a signing16



has at least one answer set.6 Moreover, it asserts that a monotone operatorhas a least �xpoint, which is also its least pre-�xpoint. (A pre-�xpoint of �is any set X such that �X � X.) This characterization of the least �xpointof � is used in the proof of the soundness lemma below.7 Proof of the Soundness LemmaThe results of the previous section are not directly applicable to programswith classical negation. It is known, however, that any extended program �can be converted into a closely related program without classical negation,as follows [12]. For each predicate P occurring in �, select a new predicateP 0 of the same arity. The atom P 0(: : :) is the positive form of the negativeliteral �P (: : :); every positive literal is, by de�nition, its own positive form.The positive form of a literal L is denoted by L+. For any set X of literals,X+ stands for the set of the positive forms of the elements of X. For anyprogram �, its positive form is the program obtained from � by replacingeach rule (4) by L+0  L+1 ; : : : ; L+m;not L+m+1; : : : ;not L+n :According to Proposition 2 from [12], a consistent set X of ground literals isan answer set of � if and only if X+ is an answer set of the positive form of�. In particular, the positive form of �D has three predicate symbols: Holds,Holds 0 and Noninertial . (There is no Noninertial 0, because the predicateNoninertial does not occur in �D under :.) Its rules are obtained from therules of �D by substituting Holds 0 for :Holds. For instance, the inertia rules(7), (8) becomeHolds(f;Result(a; s)) Holds(f; s);not Noninertial (f; a; s);Holds 0(f;Result(a; s)) Holds 0(f; s);not Noninertial (f; a; s); (14)Holds(f; s) Holds(f;Result(a; s));not Noninertial (f; a; s);Holds 0(f; s) Holds 0(f;Result(a; s));not Noninertial (f; a; s): (15)6The existence of answer sets for such programs, and for programs of some more generaltypes, was established by Phan Minh Dung [5] and Fran�cois Fages [8].17



The rules (11) turn intoNoninertial (jF j; A; s) not Holds(P1; s)+; : : : ;not Holds(Pn; s)+: (16)(The predicate symbol in the atom Holds(Pk; s)+ is either Holds or Holds 0,depending on whether or not Pk includes a negation sign.)In the rest of this section, D is a consistent domain description such thatevery two similar value propositions from D are disjoint, and � stands forthe positive form of �D.Let S be the set of all ground atoms that contain the predicate symbolNoninertial . It is easy to see that S is a signing for �. By � and � we denotethe operators de�ned, for these � and S, as in the previous section.Recall that our goal is to �nd an answer set Z of �D such that, for anyvalue proposition P , if �P 2 Z, then D entails P . This set Z will be de�nedby the condition Z+ = �Y , where Y is the least �xpoint of �. It is easy tounderstand why this is a reasonable choice. Lemma 1 tells us that �Y is ananswer set of �; it follows that Z is indeed an answer set of �D (providedthat it is consistent). On the other hand, since Y is the least �xpoint of�, �Y includes \few" atoms beginning with Holds or Holds 0 (it is clear thatsuch an atom belongs to �Y i� it belongs to Y ). For this reason, Z includes\few" literals with the predicate symbol Holds, which makes the assumption�P 2 Z in the statement of the soundness lemma particlularly strong.For any model M of D, let h(M) stand for the set of atoms of the form(�P )+, where P is a value proposition that is true in M . It is clear thatthe predicate symbols in these atoms are Holds and Holds 0. By n(M) wedenote the set of atoms of the form Noninertial (F;A; [A1; : : : ;Am]), whereF is a uent name and A;A1; : : : ; Am are action names, such that the valuepropositions F after A1; : : : ;Am;F after A1; : : : ;Am;A (17)are either both true in M or both false in M . Finally, de�neXM = h(M) [ n(M):Note that XM n S = h(M) and S nXM = S n n(M), so that�XM = h(M) [ (S n n(M)): (18)18



Our goal is to show that XM is a pre-�xpoint of �, that is,�XM � XM :(Lemma 5 below). To this end, we will check that XM contains both �XM\Sand �XM n S.Lemma 3. For any model M of D, �XM \ S � XM .Proof. Assume that B 2 �XM \ S. Then B 2 S, which means that Bhas the form Noninertial (F;A; [~A]), where F is a uent name, A is an actionnames, and ~A is a tuple A1; : : : ;Am of action names. Assume that B 62 XM .Then B 62 n(M), so that one of the atoms (17) is true in M , and the otherfalse. This can be also expressed by saying that F holds in exactly one ofthe two states M ~A; �(A;M ~A);where � is the transition function of M . This is only possible if D includesan e�ect proposition describing the e�ect of A on F or on :F , whosepreconditions hold in M ~A. Consider the rule of the type (16) correspondingto this e�ect proposition:Noninertial (F;A; s) not Holds(P1; s)+; : : : ;not Holds(Pn; s)+:The ground instance of this rule, obtained by substituting [ ~A] for s, can bewritten as B  not Holds(P1; [ ~A])+; : : : ;not Holds(Pn; [ ~A])+: (19)Since all preconditions Pi hold in MA1 ;:::;Am, each of the value propositionsPi after ~Ais true in M . It follows that the atoms Holds(Pi; [ ~A])+ do not belong toh(M). By (18), we can conclude that they do not belong to �XM either.Consequently, the reduct ��XM includes the rule obtained by removing allexpressions not Holds(Pi; [ ~A])+from (19), so that B 2 ��XM , and hence B 2 ���XM . Since B belongs alsoto S, it follows that B 62 ����XM = �XM ;contrary to the assumption that B 2 �XM \ S.19



Lemma 4. For any model M of D, ���XM � h(M) [ S.Proof. It is su�cient to verify that h(M) [ S is closed under all rules of��XM . There are rules of two kinds in this program: those in which everyatom belongs to S, and those in which every atom belongs to the complementof S. Consequently, we need to check that S is closed under all rules of the�rst kind, and h(M) is closed under all rules of the second kind. The rules ofthe �rst kind are simply ground atoms beginning with Noninertial , so thatthe �rst claim is trivial. Let R be a rule of the second kind. It is obtainedfrom an instance of the positive form of one of the rules of �D by deletingall expressions of the form not B from its body. Consider several cases,depending on the form of this rule of �D.Case 1: R is obtained from one of the rules (7), (8). Then the positiveform of this rule is one of the rules (14), (15). The ground instances of theserules have the formsHolds(F; [ ~A;A]) Holds(F; [ ~A]);not Noninertial (F;A; [~A]);Holds 0(F; [ ~A;A]) Holds 0(F; [ ~A]);not Noninertial (F;A; [ ~A]);Holds(F; [ ~A]) Holds(F; [ ~A;A]);not Noninertial (F;A; [~A]);Holds 0(F; [ ~A]) Holds 0(F; [ ~A;A]);not Noninertial (F;A; [ ~A]);where ~A is a tuple A1; : : : ;Am of action names. Consequently, R has one ofthe forms Holds(F; [ ~A;A]) Holds(F; [ ~A]);Holds 0(F; [ ~A;A]) Holds 0(F; [ ~A]);Holds(F; [ ~A]) Holds(F; [ ~A;A]);Holds 0(F; [ ~A]) Holds 0(F; [ ~A;A]);that is, �(F after ~A;A)+  �(F after ~A)+;�(:F after ~A;A)+  �(:F after ~A)+;�(F after ~A)+  �(F after ~A;A)+;�(:F after ~A)+  �(:F after ~A;A)+: (20)Moreover, Noninertial (F;A; [ ~A]) 62 �XM , because otherwise the rules wouldnot be included in the reduct ��XM . SinceNoninertial (F;A; [ ~A]) 2 S;20



it follows thatNoninertial (F;A; [ ~A]) 2 S n �XM = S \XM = n(M):By the de�nition of n(M), this means that the the value propositions (17)are either both true in M or both false in M . It follows that if the body ofone of the rules (20) belongs to h(M), then so does its head.Case 2: R is obtained from the translation of one of the value propositionsP from D. Then R is (�P )+. Since M is a model of D, P is true in M , and(�P )+ 2 h(M).It remains to consider the cases when R is obtained from one of the rules(10), (12) and (13), corresponding to some e�ect proposition P fromD. (Therules obtained from (11) belong to the �rst kind, discussed at the beginningof the proof.) By � we will denote the transition function of M .Case 3: R is obtained from (10). Then it has the formHolds(F; [ ~A;A])+  Holds(P1; [ ~A])+; : : : ;Holds(Pn; [ ~A])+;that is, �(F after ~A;A)+  �(P1 after ~A)+; : : : ; �(Pn after ~A)+: (21)If all atoms in the body of (21) belong to h(M), then all preconditionsP1; : : : ; Pn hold in the state M ~A. Consequently, F holds in the state�(A;M ~A), which means that the head of (21) belongs to h(M).Case 4: R is obtained from the rule (12). Assume for de�niteness that Fis a uent name not preceded by :. R has the formHolds(Pi; [ ~A])+  Holds(:F; [ ~A])+;Holds(F; [ ~A;A])+;that is, �(Pi after ~A)+  �(:F after ~A)+; �(F after ~A;A)+: (22)Assume that both atoms in the body of (22) belong to h(M). Then Fdoes not hold in the state M ~A and holds in the state �(A;M ~A). It followsthat D includes an e�ect proposition P 0, describing the e�ect of A on Fwhose preconditions hold in M ~A. But the e�ect proposition P , from whichR was generated, describes the e�ect of F on A also. Since D does not21



contain similar e�ect propositions, it follows that P = P 0. Consequently, thepreconditions of P hold in the state M ~A, and the head of (22) belongs toh(M).Case 5: R is obtained from the rule (13). Assume for de�niteness that Piand F are uent names not preceded by :. R has the formHolds(:Pi; [ ~A])+  Holds(:F; [ ~A;A])+;Holds(P1; [ ~A])+; : : : ;Holds(Pi�1; [ ~A])+;Holds(Pi+1; [ ~A])+; : : : ;Holds(Pn; [ ~A])+;that is,�(:Pi after ~A)+  �(:F after ~A;A)+;�(P1 after ~A)+; : : : ; �(Pi�1 after ~A)+;�(Pi+1 after ~A)+; : : : ; �(Pn after ~A)+: (23)Assume that all atoms in the body of (23) belong to h(M). Then F does notholds in the state �(A;M ~A). This is only possible when at least one of thepreconditions P1,: : :,Pn does not hold in the state M ~A. But all preconditionsother than Pi hold in this state; consequently, Pi does not hold, which meansthat the head of (23) belongs to h(M).Lemma 5. For any model M of D, �XM � XM .Proof. By the de�nitions of � and � and Lemma 4,�XM n S = ����XM n S = ���XM n S � (h(M) [ S) n S � h(M) � XM :From this inclusion and Lemma 3,�XM = (�XM \ S) [ (�XM n S) � XM :Lemma 6. Let Y be the least �xpoint of �. For any value proposition P , if(�P )+ 2 �Y , then D entails P .Proof. Assume that (�P )+ 2 �Y , and take any model M of D. By theKnaster-Tarski theorem, Y is the least pre-�xpoint of �; by Lemma 5, XM isa pre-�xpoint of �. Consequently, Y � XM . By the choice of S, (�P )+ 62 S.Consequently,(�P )+ 2 �Y nS = [(Y nS)[ (S nY )]nS = Y nS � Y � XM = h(M)[n(M):22



Since the predicate symbol in (�P )+ is Holds or Holds 0, it follows that(�P )+ 2 h(M), so that P is true in M .Now we are ready to prove the soundness lemma. Assume that D isconsistent. Consider the set Z of literals such that Z+ = �Y , where Yis the least �xpoint of �. By Lemma 1, Z+ is an answer set of �. Case1: Z is consistent. Since Z+ is an answer set of the positive form of�D, we can conclude that Z is an answer set of �D. If �D entails �P ,then �P 2 Z, and consequently (�P )+ 2 Z+ = �Y . By Lemma 6, itfollows that D entails P . Case 2: Z is inconsistent. This means that Zcontains a pair of complementary literals L, L. Since � does not containNoninertial 0, its answer set Z+ does not contain Noninertial 0 either, so thatZ does not contain :Noninertial . Consequently, the predicate symbol in Land L has to be Holds . Then these literals can be obtained by applying �to two complementary value propositions. By the choice of X, these valuepropositions are both entailed by D. This is impossible, in view of theconsistency of D.8 Conclusions and Future WorkThis paper is the �rst step in the development of high-level languagesdesigned speci�cally for representing actions. The syntax and semanticsof A precisely describe the class of action domains under considerationand the intended ontology of action. The representation of a particulardomain in A can be viewed as a high-level speci�cation for the taskof formalizing this domain in logic programming or another logic-basedformalism. The soundness and completeness of each formalization becomeprecisely stated mathematical questions. The possibilities and limitationsof di�erent representation methods can be compared in a precise fashion.For instance, in [15] this approach is used to prove the equivalence of themethods for formalizing actions proposed earlier by Pednault [26], Reiter[31] and Baker [2] for the domains representable in A.On the other hand, this paper is one of the �rst experiments (along with[17], [27], [10]) on using extended logic programs for representing knowledge.Not much is known yet about mathematical properties of extended programs.For this reason, in this initial experiment, the source language A wasdeliberately made quite simple, and we did not try to make the translation23



complete. As we have seen, even the soundness theorem limited to this classof domains turns out to be nontrivial.The next step will be to make the translation complete and applicableto domain descriptions containing similar propositions. It appears that bothgoals can be achieved by using the more expressive language of disjunctiveprograms [12] as the target language for the translation. The head of adisjunctive rule is a list of literals separated by occurrences of the "epistemicdisjunction" symbol j. For example, each of the rules (12) can be replacedby the more powerful disjunctive ruleHolds(F; s) j Holds(Pi; s) Holds(F;Result(A; s)):This will apparently eliminate the cases of incompleteness similar to thecounterexample from the end of Section 5. Similarly, all n rules (13) can bereplaced by the more intuitive disjunctive ruleHolds(P1; s) j : : : j Holds(Pn; s) Holds(F;Result(A; s)):Another useful extension of this work made possible by using disjunctiverules has to do with disjunctive information about the initial situation. In thedialect of A that allows us to represent such information, a value propositionmay include a disjunction of uent expressions (or, more generally, anarbitrary propositional combination of uent names) in place of a single uentexpression. For instance, in a "Russian roulette" version of the shootingexample, we have two guns, described by two uents, Loaded1 and Loaded2,and the initial condition can beinitially Loaded1 _ Loaded2 : (24)In the corresponding logic program, (24) will be represented by the disjunc-tive rule Holds(Loaded1; S0) j Holds(Loaded2 ; S0):Extending the semantics of A to this dialect is straightforward. However,generalizing the soundness theorem to disjunctive value propositions requiresfurther work on the mathematics of disjunctive programs.The shooting domain with several guns is one of the cases when \�rst-order" notation would be more natural than the \propositional" notation ofA. We can write initially Loaded(Gun1 ) _ Loaded(Gun2 )24



instead of (24), and express the main property of shooting by the schemaShoot(x) causes :Alive if Loaded(x); (25)where x is a metavariable for the expressions Gun1 , Gun2 . Thus (25) isviewed as shorthand for the collection of its ground instances, which arepropositions in A; no extension of the semantics of A is needed.Proposition (25) can be translated into logic programming directly, byrules like:Holds(Alive ;Result(Shoot(x); s)) Holds(Loaded(x); s):Here x is again a \variable for guns." Indeed, the ground instances of thisrule are identical to the ground instances of the rules:Holds(Alive ;Result(Shoot(Gun1 ); s)) Holds(Loaded(Gun1 ); s);:Holds(Alive ;Result(Shoot(Gun2 ); s)) Holds(Loaded(Gun2 ); s);corresponding to the two instances of (25).We are working on developing extensions of A capable of expressing richerontologies of actions.The most striking limitation of A is its inability to express domainconstraints. The uents represented in A are presumed to be independent,in the sense that the semantics of A treats any assignment of truth values tothe uent constants as a valid state.Syntactically, constraints will be expressed by propositions of the formalways < formula > :For instance, we can express that an object cannot occupy two locations atonce by the propositionalways :(At(x; l1) ^ At(x; l2))for all x, l1, l2 such that l1 6= l2. Semantically, including constraints willrequire that a state be de�ned as a truth assignment to the uent constantsthat makes all constraint formulas true. Another necessary change in thesemantics is due to the fact that, in the presence of constraints, an actionmay have indirect e�ects. For instance, consider the action of moving x from25



l1 to l2. If the only explicitly given e�ect of this action is that it makesAt(x; l2) true, we should be able to conclude that it also makes At(x; l1) false(because otherwise a constraint would be violated).We plan to design and investigate dialects of A in which nondeterministicactions can be described. In fact, nondeterminism is closely related to theidea of rami�cations, since the indirect e�ects of an action can be nondeter-ministic. Almost nothing is currently known about the frame problem in thepresence of nondeterminism. One way to include nondeterminism is to allowe�ect propositions to contain disjunctions, for instance:TossCoin causes Heads _ Tails:Semantically, in either case, nondeterministic transition functions will beused. In the corresponding logic program, the e�ect of TossCoin will beexpressed by a disjunctive rule.In [3], the extension of A is introduced in which one can describe theconcurrent execution of actions. In this extension, performing several actionsconcurrently can be represented by using a set of action names instead of asingle action name in a proposition, for instance:Alive after fWaitg fShoot(Gun1 );Load(Gun2 )g;and the semantics of A is generalized accordingly. The translation to logicprogramming presented here is extended to this \concurrent A" in the spiritof [13].The inconsistency of the Stolen Car domain (Example 4) illustrates thefact that A cannot be used for representing \causal anomalies," or \miracles"[21]. We plan to address this issue in further work, too. Our preferredapproach to causal anomalies is to view them as evidence of unknownevents that occur concurrently with the given actions and contribute to theproperties of the new situation.One other dialect of A is described in [19]. It has symbols for temporalintervals over which actions may occur.A referee has pointed out to us that there is a simple and eleganttranslation fromA into a form of abductive logic programming with integrityconstraints, which, inlike the method of [33], handles all forms of temporalreasoning in a uniform way. It would be interesting to extend this translationto more expressive dialects of A also.26
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