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Abstract

The paper investigates a methodology for representing knowledge in logic
programming using functional specifications. The methodology is illustrated
by an example formalizing several forms of inheritance reasoning. We also
introduce and study a new specification constructor which corresponds to
removal of the closed world assumption from input predicates of functional
specifications.

1 Introduction

“The only effective way to raise the confidence level of a program significantly is
to give a proof of its correctness. But one should not first make the program and
then prove its correctness, because then the requirement of providing the proof
would only increase the poor programmer’s burden. On the contrary: the pro-
grammer should let correctness proof and program grow hand in hand. ...If one
first asks oneself what the structure of a convincing proof would be and, having
found this, then construct a program satisfying this proof’s requirements, then

these correctness concerns turn out to be a very effective heuristic guidance.”
E. Dijkstra, The Humble Programmer
This paper continues the mathematical investigation of the process of repre-
senting knowledge in declarative logic programming (DLP). We are looking
for some insights into the ways to specify knowledge, to gradually trans-
fer an initial specification into an executable (and eventually efficient) logic
program and to insure the correctness of this transformation. We hope that
such insights will help to facilitate the construction of correct and efficient
knowledge based systems. In this paper we leave out some of the important
aspects of the process of representing knowledge and focus our attention on
specific types of representational problems. In particular, we concentrate on
the early stages of program development and almost completely ignore the
question of elaborating executable (but possibly inefficient) specifications
into their efficient counterparts'. We are primarily interested in what is en-
tailed by our program and not in specific algorithms used to compute this

'Our use of the term “specification” follows [Mor90] which eliminates the distinction
between programs and specifications.



entailment. In this sense our approach is complementary to the work on pro-
gram development in Prolog (see for instance [Dev90]) which concentrates
on properties of a particular inference engine. We further simplify our task
by limiting attention to a special type of knowledge representation problem
which consists in formalizing (possibly partial) definitions of new relations
between objects of the problem domain given in terms of old, known rela-
tions between these objects. We call such problems functional KR problems.
They frequently occur in the development of databases when new relations
(views) are defined in terms of basic relations stored in the database tables.
They are also typical in artificial intelligence (see [Lif93]), e.g., in formalizing
knowledge about action and change when we need to define the state of the
world at a given moment in terms of its initial (known) state.

The restriction to functional problems allows us to start the programming
process with formalizing a natural language description of a problem in terms
of functional specifications (f-specifications) [GP96] - functions which map
collections of facts about known relations from the domain into collections
of facts about new, defined relations. Such specifications can be defined by a
specifier directly in a simple set-theoretic language, or they can be built from
previously defined specifications with the help of specification constructors -
simple mappings from specifications to specifications. After the construction
of an f-specification f the designer of the system is confronted with the task
of representing f in a logical language with a precisely described entailment
relation. [GP96] advocates the use of a language £ of logic programs with two
types of negations and the answer set semantics. The choice is determined by
the ability of £ to represent default assumptions, i.e., statements of the form
“Elements of the class A normally have property P”, epistemic statements
“P is unknown”, “P is possible”, and other types of statements needed for
describing commonsense domains. Other important factors are the simplicity
of the semantics, the existence of a mathematical theory providing a basis for
proving properties of programs in £, and the availability of query answering
systems which can be used for rapid prototyping. The alternative approach
which uses logic programs with well-founded semantics and its extensions
can be found in [AP96].

At the end of the second stage of the program development the implementor
will have a logic program 7, which, taken in conjunction with a collection
X of facts about known relations of f, will entail exactly those facts about
the new relations which belong to f(X). Programs of this sort are called Ip-
functions. In [GP96] the authors suggest that the construction of 74 from f
can be substantially facilitated by so called realization theorems which relate
specification constructors to some operations on logic programs. They can
provide an implementor with a useful heuristic guidance and the means to
establish the correctness of his programs. Several examples of such theorems
and their applications will be given in the paper.

At the last stage of the process, the Ip-function 7 representing f-specification
f will be transfered into an efficient logic program Iy computing (or approx-



imating) the entailment relation of m¢. Unlike 7¢, the construction of II¢
will depend significantly on the choice of the query answering system used
by the implementors.

Space limitations preclude us from giving any serious comparison with other
methodologies of representing knowledge. Moreover, we believe that such
comparison can only be done when all of these methodologies are more fully
developed. Still a short remark is in order. At the moment, the specification
language most frequently used for the first formal refinement of a problem is
probably the language of first-order logic (FOL). As others before us we con-
jecture that FOL is not fully adequate for our purpose. Its expressive power
is insufficient to define even fairly simple f-specifications such as transitive
closure of database relations. It also doesn’t seem to be the best language
for representing defaults, epistemic statements, and other types of “com-
monsense” knowledge. These observations are well known and led to various
extensions and modifications of FOL. One of such modifications, DLP, is
used by us at the second stage of the programming process. Why not to use
it directly? There are two reasons for it. The first advantage of the language
of f-specifications over DLP is its simplicity. The construction of f requires
knowledge of a simple set-theoretic notation together with definitions of a
(hopefully small) collection of specification constructors. The specifier in-
volved at the first stage of the process does not need to know anything about
semantics of DLP. Another possible advantage of translating a natural lan-
guage description of a functional KR problem into an f-specification f is the
ability to use the structure of f and the corresponding realization theorems
for reducing the construction of m; to the construction of simpler programs.
Examples of such reductions can be found in [GP96].

The previous discussion shows that the success of our approach depends to a
large extent on our ability to discover a collection of specification construc-
tors which can serve as building blocks for the construction of f-specifications.
This paper is a continuation of a search for such constructors. We introduce
and study a new specification constructor, called input opening, which is
defined on f-specifications of KR problems which assume the closed world
assumption (CWA) [Rei78] on its input predicates. Informally, the input
opening f° of f is the result of the removal of this assumption. The no-
tion of input opening is closely related to the notion of interpolation of a
logic program from [BGK93]. Interpolation can be viewed as a particular
case of input opening defined for specifications which assume the CWA for
their outputs as well as inputs and whose input relations are independent
from each other. There are many interesting domains which do not satisfy
these assumptions, which led us to the introduction of input opening. We
give a definition of the constructor, show how it can be decomposed into
simpler ones, and prove some useful realization theorems. The use of input
opening (in combination with several previously defined constructors) is il-
lustrated by the design of a concise, but fairly powerful program representing
a “classical” KR problem associated with inheritance hierarchies. Our solu-



tion generalizes previously suggested solutions to this problem by allowing
information about class membership in hierarchies to be incomplete. The
program development is accompanied by a simultaneous proof of its correct-
ness. We find that our confidence level in the correctness of the result was
significantly improved by this approach. The paper is organized as follows.
Section 2 contains the definitions of f-specification and lp-function. Their
use is illustrated by formalizing a simple hierarchical reasoning problem un-
der CWA. In Section 3 we define input opening and use this constructor
to represent several other problems related to inheritance reasoning in the

absence of CWA.

2 F-specifications and Ip-functions

2.1 Definitions

A signature is a triple of disjoint sets called object constants, function
constants, and predicate constants. Signature oy = {Oq, Fy, P1} is a sub-
signature of signature oy = {Oq, Fy, P2} if O1 C Oq, F; C Fy and P; C Py;
o1 + o3 denotes signature {Oy U Og, F1 U Fy, Py U P;}. Terms over o are
built as in the first-order language; positive literals (atoms) have the form
p(t1,...,t,), where the t’s are terms and p is a predicate symbol of ar-
ity n; negative literals are of the form —p(ty,...,t,). Literals of the form
p(ti,. .. t,) and =p(ty,...,t,) are called contrary. By [ we denote the literal
contrary to [. Literals and terms not containing variables are called ground.
The sets of all ground terms, atoms and literals over signature ¢ are denoted
by terms(o), atoms(o) and lit(o) respectively. For a list of predicate sym-
bols p1,...,p, from o, atoms(py,...,pn) (lit(p1,...,ps)) denote the sets of
ground atoms (literals) of ¢ formed with predicates pi,...,p,. Consistent
sets of ground literals over signature o are called states of o and denoted by
states(o).

A four-tuple [ = {/,0i( /), 0,(f), dom(f)} where
1. o;(f) and o,(f) are signatures;
2. dom(f) C states(o;()):
3. fis a function which maps dom(f) into states(o,(f))

is called f-specification with input signature o;(f), output signature o,(f)
and domain dom( f). States over o;( f) and o,( f) are called input and output
states respectively.

By a logic program m over signature o(7) we mean a collection of rules of
the form

(r)lo — li, ..y lpynot Ly, ..., not 1,



where {’s are literals over o(7) and not is negation as failure [Cla78, Rei78].
head(r) = {lo}, pos(r) = {l1,..., 1}, neg(r) = {lpg1,...,ln}. head(w) is
the union of head(r) for all rules from w. Similarly for pos and neg. We say
that a literal [ € lit(o(7)) is entailed by @ (7 |= ) if [ belongs to all answer
sets of . A program with a consistent answer set is called consistent.

A four-tuple 7 = {7, 04(7),0,(7),dom(w)} where
1. m is a logic program (with some signature o(7));

2. oi(7),0,(m) are sub-signatures of o(7) called input and output signa-
tures of 7 respectively;

3. dom(r) C states(o;(T))

is called Ip-function if for any X € dom(7) program 7 U X is consistent, i.e.,
has a consistent answer set. For any X € dom(r),

T(X)={l:1l€lit(o,(m)), TUX =}

We say that an Ip-function 7 represents an f-specification f if 7 and f have
the same input and output signatures and domains and for any X € dom(f),

J(X) = 7(X).

2.2 An Example

In this section, we illustrate the notions of functional specification and Ip-
function by solving a knowledge representation problem associated with a
simple type of taxonomic hierarchies called the is-nets. The problem of
specifying and representing is-nets is commonly used to test strengths and
weaknesses of various nonmonotonic formalisms. Logic programming ap-
proaches to this problem (which assume completeness of its domain) can
be found in [AP96] and [Lin91]. Modifications of this example will be used
throughout this paper.

An is-net NV can be viewed as a combination of graphs N, and Ny where N
describes the subclass relation between classes and Ny consists of positive
and negative links connecting classes with properties. These links represent
defaults “elements of class ¢ normally satisfy (do not satisfy) property p”.
To simplify the presentation we will assume that N, is acyclic and that a
class ¢ and a property p can be connected by at most one link. We use
(possibly indexed) letters o, ¢, p, and d to denote objects, classes, properties
and defaults respectively. Fig la gives a pictorial representation of a net.
Here cg, ..., c5 are classes and p is a property. Links from c¢5 to p and from ¢4
to p represent positive and negative defaults while the other links represent
subclass relationships.

There are many knowledge representation problems which can be associated
with a net N. We start with the simplest one when N is viewed as an
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Figure 1: A simple taxonomic hierarchy

informal specification of a function fy which takes as an input complete
collections of ground literals formed by predicate symbol ¢s and computes
all possible conclusions about relation has which a rational agent can obtain
from this net.? Pictorially, the input to fu is represented by positive links
from objects to classes (see Fig 1b). It is assumed that an object o is an
element of a class ¢ iff IV, contains a path from o to c.

We are interested in applying our methodology for providing a rigorous speci-
fication of this function and for finding its logic programming representation.
Later we consider more complex functions which can also be associated with

N.

e We start by playing the role of a specifier and give a precise definition
of function fy using the language of f-specifications. To this goal, we first
identify graphs Ny and Ny with some encoding of collections of literals of
the form subclass(cq, c2), default(d,c,p,+), de fault(d,c, p, —) specified by
these graphs. (The last parameter in de fault is used to distinguish positive
and negative defaults.) For instance, a net Ny may be encoded by a logic
program consisting of rules

subclassg(c;, ;). (where ¢;, ¢; are classes connected by a link of Nj.)
subclass(C;, C;) — subclasso(Cy, C;)
subclass(C;, Cy) — subclassy(Cy, Cy), subclass(Cy, C;)

or by some other means. Ny for the net from Fig 1 consists of two statements:
de fault(dy,cs, p, +). de fault(dy, cq,p,—).

Since we assume that our information about the membership relation is is
complete, i.e., for any object o and class ¢, is(o,c¢) or —is(o,c) belongs to
the net’s input, we call fy a closed domain specification of N. (To simplify
the notation we will from now on omit the index N whenever possible). A
closed domain f-specification f of a net N can be defined as follows.

245(0, ¢) stands for “object o is an element of class ¢”; has(o,p) means that “object o
has property p”. Both predicates are typed.



1. Input signature o;(f) of f consists of object constants for objects and
classes of the hierarchy and the predicate symbol #s; output signa-
ture o,(f) consists of object constants for the hierarchy objects and
properties and predicate symbol has.

2. dom(f) consists of complete states of o;(f) which satisfy the
constraints:?

— 15(0,Ch), subclass(Cq, Cq),—is(0, Cy) (1)
3. For any X € dom(f), has(o,p) € f(X) iff there are d; and ¢ s.t.

(a) default(dy,c1,p,+) € N
(b) is(o,¢1) € X
(c) for any de fault(dy,ca,p,—) € N,
—is(0,c9) € X or subclass(cq,cz) € N
Similarly for —has(o, p).

Note that this definition does not require any sophisticated mathematics. In
particular, it presupposes no knowledge of logic programming.

e Now let us assume the role of an implementor, who just received a descrip-
tion of N and f and is confronted with the task of building an executable
Ip-function representing f. To simplify the discussion let us assume that
we will only be interested in getting answers to ground queries formed by
predicate has. According to our methodology, we will first ignore the exe-
cutability requirement and proceed with the construction of an Ip-function
7 representing the f-specification f. We start with considering a program =:

has(X,P) — default(D,C,P,+),
is(X,C),
not exceptional( X, D, +).
=has(X, P) — default(D,C, P, —),
is(X,C),
not exceptional( X, D, —)
exception(F, D1,+) — default(D,C, P, +),
default(Dy, E, P, —), T
not subclass(C, E).
exception(F, Dy, —) — default(D,C, P, —),
default(Dy, E, P,+),
not subclass(C, E).
exceptional( X, D, S) — exception(F,D,S5),
is(X, E).
N, UNy

7 A constraint is a rule of the form «— A where A is a list of literals from some signature
o. A set X € states(o) satisfies the constraint — A if A € X. X satisfies a collection C
of constraints if it satisfies every constraint in C.



(Here N, and Ny are logic programming encodings of the corresponding
nets.) We would like 7 to be viewed as an Ip-function whose input and
output signatures are the same as in f and whose domain is dom(f), i.e., we
need the following

Proposition 2.1 For any X € dom(f), program 7 U X is consistent.

Proof (Sketch). A program 7UX can be viewed as a logic program II without
classical negation in a language which contains new predicate symbols =has.
This program is stratified [ABWS88] and has therefore a unique answer set A
[Gel88]. As shown in [Gel90] A is also the unique answer set of 7 U X iff A
doesn’t contain contrary literals. Since literal [ belongs to an answer set A of
program II (not containing classical negation) iff there is a rule in II whose
head is [ and whose body is satisfied by A [Mar89] we need to show that there
are no rules r; and o with the heads has(o,p), =has(o,p) whose bodies are
satisfied by A. Suppose that there are ¢; and ¢g s.t. de fault(dy,cq1,p,+) € A,
default(dy,c1,p,—) € A, is(xz,c1) € A and is(x,cz) € A. Since a class ¢
and property p can be connected by at most one link, ¢; # ¢3. Since the
net N, is acyclic, subclass(ci,c2) ¢ A or subclass(cg,c1) ¢ A. Therefore,
exceptional(x,dl,+) or exceptional(x,d2,—) is also in A, i.e., at least one
of the rules 71, 79 has a body which is not satisfied by A. |

Now we can show the correctness of our construction.

Proposition 2.2 Lp-function 7 represents f, i.e., for any X € dom(f),
T(X) = f(X).

Proof (Sketch). In the previous proof we showed that 7 U X has the unique
consistent answer set. Let us denote it by A.

Since a literal ! belongs to consistent answer set A of program iff there
is a rule with [ in the head whose body is satisfied by A we have that
has(o,cy) € A iff there are literals default(dy,c1,p,+),is(0,¢1) € A and
exceptional(o,dy,+) ¢ A. This happens iff default(dy,c1,p,+) € Ny,
is(o,c1) € X and for any default(dy,ce,p,—) € Ny is(o,c3) ¢ X or
subclass(cy,cg) € Ng. Since X is complete, is(o0,co) ¢ X iff wis(o,¢) € X
and therefore, has(o,p) € 7(X) iff has(o,p) € f(X). Similar argument also
works for negative literals. |

The next refinement of our program will address the question of specifying
its input X. We decided that the input to f will be represented by positive
links from objects to classes and that an object o is an element of a class
¢ iff Ng contains a path from o to ¢. It is easy to check that, under this
assumption, we can replace a complete input X to our lp-function 7 by a
program 7y consisting of atoms of the form isg(o, ¢) for any link from o to ¢



which is present in the graph (isg(o1,¢1) and isg(0z,¢2) in Fig 1b), together
with three rules:

is(0,C) — is0(0,C)
is(0,Cy) «— is0(0, Ch), subclass(Cq, Cy)
=i3(0,C') — not 1s(0,C)

It is also easy to show that for ground queries the program 7 U 7y is ex-
ecutable by a simple modification of a Prolog interpreter which replaces
=has(O, P) by a new predicate symbol h&s(O,P). Since our focus in this
paper is on the first two steps of the development process we will not discuss
this question further. Instead we introduce another KR-problem associated
with is-nets and demonstrate how a specification constructor, called input
opening, can be used to specify and represent this problem.

3 Opening closed domain specifications

3.1 Specifying the problem

So far we assumed that the net N is used in conjunction with complete lists of
ground literals characterizing the relation is. In the process of development
and modification of the system this assumption may become too strong and
the specifier may decide to remove it from his specification. Now the net
N will be used in conjunction with a possibly incomplete set X of ground
literals formed by predicate is. As before, X must satisfy the constraint (1).
Pictorially, the input to the net will be represented by positive and negative
links from objects to classes (see Fig 1c). Now the net N can be viewed
as a function F° which takes X as an input and returns all conclusions
about relations ¢s and has which a rational agent can obtain from N and
X. (f° will be called the open domain specification of N.) The problem
is to precisely define the set of all such conclusions. In order to do that
the specifier may use a closed domain f-specification f of N together with
a specification constructor called the input opening of f. To define this
constructor we need the following terminology.

Let D be a collection of states over some signature o. A set X € states(o)
is called D-consistent if thereis X € D s.t. X C X; X is called a D-cover of
X.

If, for instance, o is a signature associated with net Ny from Fig 1 and D
is the collection of complete sets from [it(is) which satisfy the constraint
(1) then {is(o1,¢c1),i5(02,¢2)} is D-consistent while {is(o01,¢1), is(02,c2),
—is(0g, ¢3)} is not.

The set of all D-covers of X is denoted by ¢( D, X'). The set of all D-consistent
states of ¢ is called the interior of D and is denoted by D°. An f-specification



f defined on a collection of complete states of o;(f) is called closed domain
specification.

Definition 3.1 (Input Opening) Let f be a closed domain specification with
domain D. An f-specification f° is called the input opening of f if

oi(f7) = oi(f)  ao(f°) = ai(f) + ou(f) (2)

dom(°) = D° (3)

rFx= N o X (4)
Xee(D,X) Xee(D,X)

Now the open domain f-specification f3; of a net N can be defined as the
input opening of its closed domain specification fyn. (Again, we will omit
the index whenever possible).

Our next problem is to find an Ip-function representing f°. To do that we
will show how the input opening of f can be expressed as a composition
of two simpler specification constructors called interpolation and domain
completion. We need the following definitions.

Definition 3.2 A set X € states(o) is called mazimally informative w.r.t.
a set D C states(o) if X is D-consistent and

X= () X (5)

Xee(D,X)
By D we denote the set of states of ¢ maximally informative w.r.t. D.

Consider the net N from Fig 1b. The set {is(01,¢1), is(01,¢3), 15(01,¢5),
is(02,¢2), 15(02, ¢3), 15(02, ¢5)} is maximally informative w.r.t. the set of all
complete input states of N, while the set {is(o1,¢1), is(02,c2)} is not.

Definition 3.3 (Interpolation) Let f be a closed domain f-specification with
domain D. F-specification f with the same signatures as f and the domain
D is called the interpolation of f if

= s (6)

Xee(D,X)

This is a slight generalization of the notion of interpolation introduced in
[BGK93], where the authors only considered interpolations of functions de-
fined by general logic programs.

Definition 3.4 (Domain Completion)
Let D be a collection of complete states over signature o. The domain
completion of D is a function fp which maps D-consistent states of o into
their maximally informative supersets.

10



Specifications f and g s.t. o,(f) = 0,(¢g) and lit(o:(g)) N lit(o,(g)) = @ can
be combined into a new f-specification g o f by a specification constructor o
called incremental extension [GP96]. Function g o f with domain dom(f),
oi(gof)=0i(f),0.(g0f) = 0,(f)+0,(g)is called the incremental extension
of f by gif for any X € dom(gof),gof(X)= f(X)Ug(f(X)). The following

proposition follows immediately from the definitions.

Proposition 3.1 For any closed domain f-specification f with domain D
fo="Fofp (7)

Proof. First notice that by definitions of f° and D°,

X € dom(f°)iff X € dom(D°).

Let X € dom(f°)and Y = D°(X). By definitions of D° and f, Y € dom(f).

By definition of incremental extension
foDo(X)=VUfY)
But

f(Y) = ﬂj{ee(y) f(X)
and, hence from definition of Y we have (X ) = e(Y),

fY) = ﬂXEe(X) f(X)

Finally, by definition of domain completion,

Fo(X)=foDe 0

3.2 Realization theorems for domain completion and inter-
polation

The above proposition shows that a representation for f° can be constructed
from lp-functions representing f and fp. In the construction of these func-
tions we will be aided by realization theorems for domain completions and
interpolations.

Let C' be a collection of constraints of the form «— A where A C lit(o). A
constraint is called binary if A consists of two literals. We say that a domain
D is defined by C'if D consists of complete sets from states(o) satisfying C.
Let C' be a set of binary constraints and D be the closed domain defined by
C. Let Tp be a program obtained from C' by replacing each rule «— [,y by
the rules =y « Iy and —ly < [y.

Theorem 3.1 (Realization Theorem for Domain Completion)
If for every [ € lit(c) there is a set Z € D not containing [ then a four-tuple
{Tp,o0,0,D°} is an Ip-function which represents domain completion fp of

D.

11



To give a realization theorem for the interpolation we need some auxiliary
definitions.

Let D be a collection of complete states over a signature o. Function f
defined on the interior of D is called separable if

N F(X)CAX)

Xee(D,X)

or, equivalently, if for any X € dqm(f) and any output literal [ s.t. [ € f(X)
there is X € ¢(D, X)s.t. | € f(X).

The following examples may help to better understand this notion.

Example 3.1 Let D be the set of complete states over some signature o;
and let m be an Ip-function defined on D° = states(o;), s.t.

1. The sets of input and output predicates of 7w are disjoint and input
literals do not belong to the heads of 7;

2. forany [ € 0,1 ¢ lit(7) or [ & lit(w). (By lit(7) we mean the collection
of all literals which occur in the rules of the ground instantiation of «.)

Then 7 is separable.

Proof. (Sketch)

Let X € dom(w) and consider the set
X*=XU{l:1¢ X,1¢lit(r)}

By condition (2), X* € dom(w). By condition (1) lit(0;) is a splitting set
of programs 7 U X and 7 U X*. By the splitting set theorem and condition
(1) we have that for any output literal [, [ € n(X) iff red(7,X) |= [ and
l € m(X™)iff red(m, X*) |= [. But by construction of X* and the definition
of red, red(r, X ) = red(r, X*), hence [ € 7(X) iff [ € 7(X*) and therefore,
7 is separable. O

The next example shows that the last condition is essential.

Example 3.2 Let D = {{p(a)},{—p(a)}} and consider a function f; defined
on D° by the program

q(a) — p(a)

q(a) = ~p(a)

Let X = (. Obviously, f1(X) = 0 while ﬂXec(D,X)fl(X) = {g(a)} and

hence f; is not separable.

12



Example 3.3 In some cases to establish separability of an lp-function 7 it
is useful to represent 7 as the union of its independent components and to
reduce the question of separability of 7 to separability of these components.
Let m be an Ip-function with input signature o; and output signature o,. We
assume that the input literals of 7 do not belong to the heads of rules of .
We say that 7 is decomposable into independent components mg, ..., 7, if
T = moU...Um, and lit(7mg)Nlit(m;) C lit(o;) for any k # 1. It is easy to check
that, for any 0 < k < n, four-tuple {7, 0;, 0., dom(m)} is an Ip-function, and
that if all these functions are separable then so is w. This observation can
be used for instance to establish separability of function f; defined on the
interior of the set D from the previous example by the program

¢1(a) < p(a)
g2(a) < —p(a)

(The output signature of f; consists of a, ¢; and ¢z).

Now we are ready to formulate our next theorem.

Theorem 3.2 (Realization Theorem for Interpolation) Let f be a closed
domain specification with domain D represented by an Ip-function 7 and let
7 be the program obtained from 7 by replacing some occurrences of input
literals [ in pos(w) by not I. Then {7, 0;(f),0.(f), dom(f)} is an lp-function
and if 7 is separable and monotonic then 7 represents f.

3.3 Representing the open domain specification of N

As before, we now need to address the task of constructing an Ip-function 7°
representing f°. We already know that f° = fo fp where D is the domain
of f. This means that we need to find representation 7 of f and #p of fp.
An important heuristic guidance in this task will be provided to us by the
corresponding realization theorems. To find the representation of f we use
Theorem 3.2. The program 7 can be obtained from 7 by replacing the rule
defining predicate exzceptional by the rule

exceptional( X, D, S) — exception(F,D,S5), (8)
not —is(X, E).

(which is the only way to turn 7 into a signed program using the transfor-
mation from Theorem 3.2.) We may show that 7 is separable and hence:

Proposition 3.2 7 represents f

Proof. (Sketch) We need to show that 7 is separable and monotonic.
1. (Separability). Let X € D and consider an output literal [ ¢ 7(X). Let
us first assume that [ = has(z,p). We need to construct a cover X of X
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such that [ ¢ 7(X). We say that a class e is p-negative if there is a negative
link from e to p in N; p-negative class e can defeat p(z) if (-2 € e) ¢ X.
Let Eg be a set of all classes which can defeat p(z) and consider

E=FEyU{c:3e(e€ Eyand subclass(e,c) € N)},
U=XU{is(z,e):e€ FE}, and

X = U U {~is(o,¢):is(o,¢) ¢ U}.

We show that

(a) X is a cover of X;

(b) L ¢ 7(X)

(a) By construction, X is complete and consistent. We need to show that it
satisfies the constraints (1).

Consider arbitrary o, ¢; and c¢g such that subclass(cy,c2) € N and is(o,¢1) €
X. TFirst let us consider a case when is(o,¢;) € X. Then any cover of
X must contain is(o,cz). Since X is maximally-informative, this implies
that is(o,cz) € X, and hence, by consistency of X the constraint (1) is
satisfied. Suppose now that is(o,c1) € X. Then ¢1,¢3 € E. By construction,
is(z,cq) € X. Consistency of X again guarantees that constraint (1) is
satisfied.

(b) Since X is complete and consistent and lit(is) is a splitting set of ¥ we
have that red(r, X) = red(%, X) and hence 7 U X is consistent iff # U X is
consistent. Consistency of # U X was established before and hence 7 U X
is also consistent and has a consistent answer set 5. As shown in [Mar89],
has(z,p) € S iff there is class ¢ such that default(d,c,p,+) € N, is(x,c) €
X, exceptional(xz,d,+) ¢ 5. Let ¢ satisfy these condition and consider two
cases:

(i) is(z,c) € X.

Then, since [ ¢ 7(X), we have that for every class e such that
exception(e,d,+) € S, —is(xz,e) € X. By construction of X this implies
that —is(z,e) € S, exceptional(x,d,+) € S, and therefore has(z,p) & 7(X).
(ii) is(z,c) € X.

Then is(z,c¢) € U. By construction of U we have that there is a class
e s.t. default(dy,e,p,—) € N, —is(xz,e) ¢ X and either ¢ = ¢ or
subclass(e,c) € N. By construction we have that is(z,e) € U. Since our
graph is acyclic, we have that exception(e,d,+) € 5, exceptional(x,d,+) €
S and therefore has(z,p) & 7(X).

Similar arguments works for [ = =has(z,p).

2. (Monotonicity). Since atoms(exception,exceptional) is a signing for 7
monotonicity follows from Turner’s result.

Now Proposition 3.2 follows from Theorem 3.2. O
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To complete the construction of 7° we need to find the representation 7p
of the domain completion of D = dom(f). We use Theorem 3.1. The
corresponding program 7p consists of the rules

is(0,Cy) «— 1s(0,Cy), subclass(Cy, Cy) (9)
=15(0, Ch) «— =1s(0, Cy), subclass(Cy, Cy) (10)
Proposition 3.3 7p represents fp

Proof. Follows immediately from the fact that constraints for IV can be
reduced to binary constraints by using complete available information about
relation subclass and Proposition 3.1. O
Finally, using Propositions 3.2, 3.3 and the realization theorem for incre-
mental extension from [GP96] we can prove:

Proposition 3.4 7° represents f°

Proof. By Proposition 3.1, f© = fo fp. Since #p has the unique answer
set we can use realization theorem for incremental extension from [GP96]
according to which representation 7° of f° can be obtained simply by com-
bining 7 and 7p* |
Proposition 3.4 shows the correctness of 7° w.r.t. our specification. However,
due to the left recursion in the rules 9, 10 7° cannot be run with the Prolog
interpreter. It was however run under a simple meta-interpreter based on
the SL.G inference engine [CSW95] which is sound w.r.t. our semantics. Of
course, the left recursion can be eliminated by introducing a new predicate
189 but we will not do it here due to the space limitations.

3.4 A simple generalization

In this section we generalize the KR problem associated with a net N by
allowing strict (non-defeasible) links from objects to properties to belong to
the net’s input (see Fig 2). We show that this generalization can be easily
incorporated into the design. To do that we use another specification con-
structor from [GP96]. We will recall the following definitions from [GP96].

Definition 3.5 Let f be a functional specification with disjoint sets of input
and output predicates. A f-specification f* with input signature o;( f)40,(f)
and output signature o,(f) is called input extension of f if

1. f* is defined on elements of dom(f) possibly expanded by consistent
sets of literals from o,( f),

2. for every X € dom(f), f*(X)= f(X),

*As shown in [GP96] this simple construction does not always work.
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Figure 2: Hierarchy with links from objects to properties

3. for any Y € dom(f*) and any [ € lit(o,(f)),

(i) if I €Y then [ € f*(Y)
(i) if €Y and [ € Y then [ € f*(Y)iff I € f(Y nlit(o;(f))

Definition 3.6 Let © be an Ip-function. The result of replacing every rule
lo—Ul,....lm,n0t lpyq,...,n0t 1,

of m with Iy € lit(o.(f)) by the rule
lo—Ul,....lpm,not ly4q,...,n0t 1, not o

is called the guarded version of 7 and is denoted by 7.

Theorem 3.3 ([GP96]) (Realization Theorem for Input Fxtension)

Let f be a specification represented by Ip-function 7 with signature o. If the
set U = lit(o)\ lit(o,) is a splitting set of 7 dividing 7 into two components
mo = top(w,U) and 11 = base(w, U) then Ip-function 7* = 71 U7y represents
the input extension f* of f.

Now we can give a specification of the third function associated with a net
N. It is defined by a specification

f7=F"ofp
and the representation 7* is obtained by replacing the has rules in 7° by

has(z,p) — default(d,c,p,+),

is(x,c),
not exceptional(z,d,+),
not —has(z,p).

=has(x,p) — default(d,c,p,—),
is(x,c),
not exceptional(z,d,—)
not has(x,p).

The following proposition follows immediately from the construction of 7*
and Theorem 3.3
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Proposition 3.5 7* represents f*

Again, specification constructors and their realization theorems provided a
useful heuristic guidance and allowed to build a program provenly satisfying
the corresponding specification.

4 Conclusion

The main contributions of this paper consist in

e Introducing the input opening of a closed domain specification and proving
some properties of this constructor;

e Providing a case study for our methodology.

Somewhat surprisingly, the resulting class of programs formalizes inheritance
reasoning with incomplete information which was not previously formalized.
Unfortunately, the size limitations do not allow us to include proofs. They

can be found in [GG9I7].
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