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Abstract  The paper discusses an architecture for intelligent agents based on the
use of A-Prolog - a language of logic programs under the answer set se-
mantics. A-Prolog is used to represent the agent’s knowledge about the
domain and to formulate the agent’s reasoning tasks. We outline how
these tasks can be reduced to answering questions about properties of
simple logic programs and demonstrate the methodology of constructing
these programs.
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1. INTRODUCTION

This paper is a report on the attempt by the authors to better un-
derstand the design of software components of intelligent agents capable
of reasoning, planning and acting in a changing environment. The class
of such agents includes, but is not limited to, intelligent mobile robots,
softbots, immobots, intelligent information systems, expert systems, and
decision-making systems. The ability to design intelligent agents (IA)
is crucial for such diverse tasks as space exploration, intelligent commu-
nication with the Internet, and development of various types of control
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systems. Despite the substantial progress in the work on IA achieved
in the last decade we are still far from a clear understanding of the ba-
sic principles and techniques needed for their design. The problem is
complicated by the fact that [A differ from more traditional software
systems in several important aspects:

e An agent could have a large amount of knowledge about the domain
in which it is intended to act, and about its own capabilities and goals.

e It should be able to frequently expand this knowledge by new informa-
tion coming from observations, communication with other agents, and
awareness of its own actions.

e All this knowledge cannot be explicitly represented in the agent’s mem-
ory. This implies that the agent should be able to reason, i.e. to extract
knowledge stored there implicitly.

e Finally, the agent should be able to use its knowledge and its ability
to reason to rationally plan and execute its actions.

These observations imply that solid theoretical foundations of agent de-
sign should be based on theories of knowledge representation and reason-
ing. Work reported in this paper is based on two such theories: theory
of logic programming and nonmonotonic reasoning (Baral and Gelfond,
1994; Lifschitz, 1996; Marek and Truszczynski, 1993) and theory of ac-
tions and change (Sandewall, 1998).

The latter develops the ontology and basic relations needed for mod-
eling the agent’s domain. The former provides a logic for representing
and reasoning with the domain knowledge. This logic is more expres-
sive than classical first-order predicate calculus (Dantsin et al., 1997).
This additional expressibility is needed to represent defaults, causal re-
lations, various forms of transitive closures, etc. The entailment relation
of the logic is nonmonotonic, i.e. it allows the reasoner to withdraw
previously made conclusions when new information becomes available.
This property substantially simplifies the process of assimilating new
information. There are efficient systems implementing rather general
reasoning algorithms developed in logic programming community. In
this paper we show how these systems can be used to implement specific
planning, explanation finding, and plan checking algorithms in a simple
observe-think-act style agent architecture.

There are several other approaches which use logic as a basis for agent
design. They differ primarily by the languages and the logics in which
the agent’s knowledge is specified, by the algorithms used by the agent
to perform its reasoning tasks, and by the agent’s architecture. For in-
stance, the Toronto School of Cognitive Robotics (Levesque et al., 1997)
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uses modified and substantially expanded versions of the situation cal-
culus of (McCarthy and Hayes, 1969) to specify the agent knowledge.
Despite occasional use of nonmonotonic entailment (primarily in the
form of circumscription (McCarthy, 1980)) the Toronto School seems to
prefer to stay as close as possible to the entailment relation and reason-
ing algorithms of classical logic. In their approach the agent’s behavior
is determined by a program written in a programming language Golog (
Levesque et al., 1997) or one of its variants. Such a program allows pro-
cedural constructs such as sequences, loops, conditionals, and has non-
deterministic operators and test conditions where the non-determinism
is resolved by the interpreter so that the overall plan is executable. To
interpret and execute these constructs the agent uses the situation cal-
culus based entailment relation described above. The main program can
be complemented by an execution monitor capable of modifying plans
invalidated by exogenous actions (DeGiacomo et al., 1998), as well as
by other special purpose reasoning modules. In (Kowalski, 1995; Kowal-
ski and Sadri, 1999), the authors investigate an architecture based on a
variant of observe-think-act cycle. The internal state of the agent is de-
termined by a collection of standard logic programming rules, integrity
constraints, condition-actions rules, etc. The approach is somewhat in-
dependent of a particular entailment relation but the authors seem to
favor entailments associated with the Clark’s completion (Clark, 1978).
The thinking part of a cycle is performed by a combination of traditional
logic programming algorithms, abduction (Denecker and De Schreye,
1998; Kakas et al., 1998) and forward reasoning by means of integrity
constraints.

Even though all these approaches develop in parallel they share many
common insights and ideas. Sometimes this is a result of direct influence
and sometimes (and probably more often) the similarities are determined
by the common subject of study. The technical differences between the
approaches are however rather large and we believe that the complete
understanding of their pros and cons will require a substantial amount
of further work. This paper is aimed at explaining our approach and we
do not make any attempt at the comparison.

2. MODELING THE AGENT

In this paper we adopt the following simplifying assumptions about
the agents and their environments:

1. The dynamics of the agent’s environment is viewed as a (possibly
infinite) transition diagram whose states are sets of fluents (i.e.,



statements whose truth depends on time) and whose arcs are la-
beled by actions.

2. The agent is capable of making correct observations, performing
actions, and remembering the domain history.

These assumptions hold in many realistic domains and are suitable for
a broad class of applications. In many domains, however, the effects of
actions and the truth of observations can only be known with a sub-
stantial degree of uncertainty which cannot be ignored in the modeling
process. In this case our basic approach can be expanded by introduc-
ing probabilistic information. We prefer to start our investigation with
the simplest case and work our way up the ladder of complexity only
after this simple case is reasonably well understood. The assumptions
above determine the structure of the agent’s knowledge base. It consists
of two parts. The first part, called an action description, specifies the
transition diagram of the agent. It contains descriptions of actions and
fluents relevant to the domain together with the definition of possible
successor states to which the system can move after an action a is exe-
cuted in a state o. Due to the size of the diagram the problem of finding
its concise specification is far from being trivial. Its solution requires
a good understanding of the nature of causal effects of actions in the
presence of complex interrelations between fluents. An additional level
of complexity is added by the fact that, unlike standard mathematical
reasoning, causal reasoning is nonmonotonic, i.e., new information about
the domain can cause a reasoning agent to withdraw its previously made
conclusions. Nonmonotonicity is partly caused by the need for represent-
ing defaults, i.e., statements of the form “Normally, objects of type A
have property P”. A default that is often used in causal reasoning is
the so called inertia axiom (McCarthy and Hayes, 1969). It says that
“Normally, actions do not change the values of fluents”. The problem of
finding a concise and accurate representation of this default, known as
the Frame Problem, substantially influenced Al research during the last
twenty years (Shanahan, 1997). The second part of the agent’s knowl-
edge contains observations made by the agent together with a record of
its own actions. It defines a collection of paths in the diagram which
can be interpreted as the domain’s possible trajectories traversed so far.
If the agent’s knowledge is complete (i.e., it has complete information
about the initial state and the action occurrences) and its actions are
deterministic then there is only one such path. We believe that a good
theory of agents should contain a logical language (equipped with a con-
sequence relation) which would be capable of representing both types of
the agent’s knowledge.
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A-Prolog

In this paper the language of choice is A-Prolog - a language of
logic programs under the answer set semantics (Gelfond and Lifschitz,
1988; Gelfond and Lifschitz, 1991). An A-Prolog program consists of a
signature X and a collection of rules of the form

head <+ body (1.1)

where the head is empty or consists of a literal [y and body is of the
form Iy, ..., ln, not lyt1,...,not I, where [;’s are literals over . A
literal is an atom p or its negation —p. If the body is empty we replace
< by a period. While —p says that p is false, not p has an epistemic
character and can be read as “there is no reason to believe that p is
true”. The symbol not denotes a non-standard logical connective often
called default negation or negation as failure. An A-Prolog program II
can be viewed as a specification given to a rational agent for constructing
beliefs about possible states of the world. Technically these beliefs are
captured by the notion of answer set of a program II. By ground(Il) we
denote a program obtained from II by replacing variables by the ground
terms of ¥. By answer sets of II we mean answer sets of ground(II). If
IT counsists of rules not containing default negation then its answer set S
is the smallest set of ground literals of 3 which satisfies two conditions:

1. S is closed under the rules of ground(Il), i.e. for every rule (1.1)
in II, either there is a literal [ in its body such that [ ¢ S or its
non-empty head [y € S.

2. if S contains an atom p and its negation —p then S contains all
ground literals of the language.

It is not difficult to show that there is at most one set Cn(II) satisfying
these conditions.

Now let I be an arbitrary ground program of A-Prolog. For any set S of
ground literals of its signature 3, let II° be the program obtained from
IT by deleting

(i) each rule that has an occurrence of not ! in its body with [ € S,
(ii) all occurrences of not [ in the bodies of the remaining rules.
Then S is an answer set of 11 if
S = Cn(11°). (1.2)

In this paper we limit our attention to consistent programs, i.e. programs
with at least one consistent answer set. Let S be an answer set of II.
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A ground literal [ is true in S if [ € S; false in S if =l € S. This is
expanded to conjunctions and disjunctions of literals in a standard way.
A query Q is entailed by a program II (II = @) if @ is true in all answer
sets of II. Queries 4 A...Alpand 3 V...V I, (where for an atom p,
p denotes —p, and =p denotes p) are called complementary. If Q and Q
are complementary queries then II's answer to @ is yes if Il = Q; no if
II = Q, and unknown otherwise.

Here are some examples. Assume that signature X contains two object
constants a and b. The program

I = {=p(X) < not ¢(X).  q(a).}
has the unique answer set S = {g(a), 7p(b)}. The program
Il = {p(a) < not p(b). p(b) ¢ not p(a).}

has two answer sets, {p(a)} and {p(b)}. The programs

II3 = {p(a) < not p(a).} and IIy = {p(a). < p(a).}
have no answer sets.

It is easy to see that programs of A-Prolog are nonmonotonic. (II; =
=p(b) but II; U{q(b).} F& —p(b).) A-Prologis closely connected with more
general nonmonotonic theories. In particular, as was shown in (Marek
and Truszczyniski, 1989; Gelfond and Lifschitz, 1991), there is a simple
and natural mapping of programs of A-Prolog into a subclass of Reiter’s
default theories (Reiter, 1980). (Similar results are also available for
Autoepistemic Logic of Moore (Moore, 1985).)

Specifying transition diagrams

To describe the agent’s transition diagram, the domain’s history and
the type of queries available to the agent we use action languages (Gel-
fond and Lifschitz, 1992) which can be viewed as formal models of parts
of natural language that are used for talking about the effects of actions.
A particular action language reflects properties of a domain and the abil-
ities of an agent. In this paper we define a class of action languages AL
which combine ideas from (Baral, 1995; McCain and Turner, 95; Baral
et al., 1995; Baral et al., 1997; Guinchiglia and Lifschitz, 1998). Lan-
guages AL(X) from this class will be parameterized with respect to a
signature ¥ which we normally assume fixed and omit from our notation.
The simplicity of AL as a language makes it suitable for illustrating our
methodology, which is a primary goal of this paper. The methodology
however is applicable to languages with much richer ontology.
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We follow a slightly modified view of (Lifschitz, 1997) and divide an
action language into three parts: action description language, history
description language, and query language. We start with defining the
action description part of AL, denoted by ALy Its signature ¥ will
consist of two disjoint, non-empty sets of symbols: the set F of fluents
and the set A of elementary actions. A set {a1,...,a,} of elementary
actions is called a compound action. It is interpreted as a collection of
elementary actions performed simultaneously. By actions we mean both,
elementary and compound actions. By fluent literals we mean fluents
and their negations. By [ we denote the fluent literal complementary to
. A set S of fluent literals is called complete if for any f € F, f € S or
—f € S. An action description of AL4(X) is a collection of propositions
of the form

1. causes(ae,lo,[l1,...,0]),
2. caused(ly, [l1,...,1n]), and
3. impossible_if(a,[l1,- .. ,1s))

where a. and a are elementary and arbitrary actions respectively and
lo,...,l, are fluent literals from Y. The first proposition says that, if
the action a were to be executed in a situation in which [y, ..., hold,
the fluent literal Iy will be caused to hold in the resulting situation.
Such propositions are called dynamic causal laws. (The restriction on
ae being elementary is not essential and can be lifted. We require it
to simplify the presentation). The second proposition, called a static
causal law, says that, in an arbitrary situation, the truth of fluent literals,
l1,...,ln, (often called the body of (2)) is sufficient to cause the truth
of lyp. The last proposition says that action a can not be performed
in any situation in which [i,...,l, hold. Notice that here a can be
compound, e.g. impossible({a1,a2},|]) means that elementary actions
a1 and ag cannot be performed concurrently. An action description A
of AL, defines a transition diagram describing effects of actions on the
possible states of the domain. A state is a complete and consistent set
o of fluent literals such that o is closed under the static causal laws of
A, i.e. for any static causal law (2) of A, if {l1,...,l,} C o thenly € 0.
States serve as the nodes of the transition diagram. Nodes o1 and o9
are connected by a directed arc labeled by an action a if oo may result
from executing a in 1. (To simplify the diagram we do not distinguish
between links labeled by an elementary action a. and ones labeled by
{ac}.) The set of all states that may result from executing a in a state
o will be denoted by res(a, o). Defining this set for action descriptions
of increasingly complex action languages seems to be one of the main
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issues in the development of action theories. Several fixpoint definitions
of this set were recently given by different authors; see for instance (
McCain and Turner, 95; Lin, 95; Guinchiglia and Lifschitz, 1998). The
definition we give in this paper is based on the semantics of A-Prolog
and is similar in spirit to the work in (Baral, 1995). First let us consider
the following program:

1.  holds_at(L,T") +— next(T,T"),
causes(Ae, L, P),
occurs_at(A.,T),
hold_at(P,T).

2. holds_at(L,T) < caused(L, P),
hold_at(P,T).
3.  holds_at(L,T") +— next(T,T"),

holds_at(L,T),
not holds_at(L,T").
4. hold_at([],T).
5. hold_at([L|Rest],T) < holds_at(L,T),
hold_at(Rest,T).
6. —occurs_at(Ae,T) < not occurs_at(Ae,T).
7.  —occurs.at(Ac,T) <« member(Ae, Ac),
—occurs_at(Ae, T).
8. —occurs_at(A.,T) <+ member(Ae, A.),
occurs_at(Ae,T).
not —occurs_at(Ae,T).
impossible_if(A, P),
hold_at(P,T),
occurs_at(A',T),
subset(A, A).

9. occurs_at(A.,T)

T

We use A., A, and A as variables for elementary, compound, and arbi-
trary actions respectively; L and P are variables for fluent literals and
(finite) sets of fluent literals, and 7" and 7" are variables for integers from
some interval [0, N]. Integers from this interval will be later interpreted
as time points. The program uses the list notation [ | and predicate sym-
bols member and subset denoting the standard membership and proper
subset relations; member(A., A.) holds when A, is an elementary action
not belonging to A.. Rules one and two of II(IN) describe the effects of
causal laws. The predicate symbol holds_at(L,T') denotes the relation
“A fluent literal L is true at moment 77; hold_at(P,T) denotes the ex-
pansion of this relation to sets of fluents; occurs_at(A,T) indicates that
an action A occurs at moment 7. The relation next(T,T") is satisfied
by two consecutive moments of time from the interval [0, N]. Rule three
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encodes the law of inertia. The default nature of this law is nicely cap-
tured by the use of default negation of A-Prolog. Rules four and five
define hold_at(P,T'). Normally, the program II(N) will be used in con-
junction with a complete list of elementary actions which occurred in the
domain. The completeness is expressed by the closed world assumption
for elementary actions encoded by rule six. Rules seven and eight define
the complete list of compound actions which do not occur at moment 7.
Rule nine uses the closed world assumption to define compound action

which does occur at that moment. (It is easy to see that if ay, ..., a is
the complete list of elementary actions which occur at moment 7' then
the only compound action which occur at this moment is {aj,...,ar}.)

The last rule with the empty head is used to insure that impossible
actions are indeed impossible.

By II(1) we denote the program obtained from II(N) by replacing the
time variables by 0 and 1. Now we define the transition relation deter-
mined by an action description A.

Definition 1 For any action a and state o1, a state oo is a successor
state of a on o if there is an answer set S of

(1) U AU {holds_at(l,0) : | € o1} U{occurs_at(a;,0) : a; € a}
such that oo = {l : holds_at(l,1) € S}.

It is essential to notice that Definition 1 allows us to reduce computing
successor states of the transition diagram representing our dynamic do-
main to computing answer sets of comparatively simple logic programs.
For domains without concurrent actions this definition is equivalent to
one from (McCain and Turner, 95). The idea however is not limited to
ALy and can be used to define a larger range of transition functions.

We say that an action description A of ALy is deterministic if for any
state ¢ and any action a from ¥ there is at most one successor state,
i.e., the cardinality of the set res(a,o) is at most one. The following
example shows that action descriptions of AL, can be nondeterministic.

Example 1 Let A; be an action description

causes(a, f,[]). caused(~g1,[f,g2]). caused(=gs, [f,g1])-

Using the Definition 1 it is easy to show that the transition diagram of
Aj can be given as follows:

res(a,{f,91,792}) = {{f, 91, ~g2}}
res(a, {f,~g1,92}) = {{f, ~91, 92}}
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BS(CL, {f’ g1, _'92}) = {{f’ 91, _'92}}

BS(CL, {_'fa g1, 92}) = {{fv g1, _'92}’ {f’ 91, 92}}
BS(CL, {_'fa g1, _'92}) = {{f’ g1, _'92}}

T@S(CL, {_'fa g1, 92}) = {{f’ 91, 92}}

T@S(CL, {_'fa g1, _'92}) = {{f’ 91, _'92}}

Action descriptions not containing static causal laws are deterministic
and hence the addition of such laws adds to expressive power of the
language. The following proposition gives a sufficient condition guaran-
teeing that this property holds.

5 0303

Proposition 1 Any action description A of ALy with static causal laws
containing at most one literal in the body is deterministic.

The proposition is meant to illustrate how the syntactic form of action
description can be used to learn important properties of the correspond-
ing transition relations. Similar results in somewhat different context
can be found in (Pinto, 1999; Lin, 2000).

Specifying the history

We now describe a language ALy for specifying the history of the
agent’s domain. To do that we expand action signature X by integers
0,1,2,..., which are used to denote time points in the actual evolution
of the system. If such evolution is caused by a sequence of consecutive
actions aq, ..., a, then 0 corresponds to the initial situation and &k (0 <
k < n) corresponds to the end of the execution of ay, ..., a.

The domain’s past is described by a set, I', of axioms of the form
1. happened(a, k).
2. observed(l, k).

where a’s are elementary actions. The first axiom says that (elementary)
action a has been executed at time k; the second axiom indicates that
fluent literal [ was observed to be true at time k. The axioms of I" will be
often referred to as observations. Every set I' of observations uniquely
defines the current moment of time, t.(I'). If I' = () then ¢.(T") = 0; If
every occurrence, t', of time in I' is less than or equal to some t such
that happened(a,t) € T' then t.(I') = t + 1; otherwise, t. = maz({t :
observed(l,t) € I'}). (I" will be omitted whenever possible.)

A set of axioms defines the collection of paths in a transition diagram 7T’
which can be interpreted as possible histories of the domain represented
by T'. (As usual, by a path we mean a sequence (09, a1,01,...,a0n,0n),
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where og is a state and for 1 < i < n, 0; € res(a;,0;—1).) If our knowl-
edge about the initial situation is complete and actions are deterministic
then there is only one such path. A pair (A,T"), where A is an action
description and I' is a set of observations, is called a domain descrip-
tion. The following definition refines the intuition behind the meaning
of observations.

Definition 2 Let D = (A,I') be a domain description with the cur-
rent time n, 7" be the transition diagram defined by A, and H =

(00,a1,01,...,an,0,) be a path in T. We say that H is a possible history
of D if

1. action a; is the i-th action in H iff a; = {a : happened(a,i—1) € T'}.
2. If observed(l, k) € T then | € oy.

A domain description D is called consistent if it has a non-empty set of
possible histories.

Queries and the consequence relation

Let us now assume that at each moment of time an agent maintains a
knowledge base in the form of a domain description D. Various reasoning
tasks of an agent can be reduced to answering queries about properties
of the agent’s domain. The corresponding query language, £,, includes
the following queries:

1. holds_at(l,t).
2. currently(l).
3. holds_after(l,[ay,...,a1],t).

Query (1) asks if fluent literal [ holds at time ¢. Query (2) asks if / holds
at the current moment of time. The last query is hypothetical and is
read as: “Is it true that a sequence aq, ..., a, of actions could have been
executed at the time 0 < t < t., and if it were, then fluent literal [ would
be true immediately afterwards”. If t < t. and the sequence aq, ..., a, is
different from the one that actually occurs at ¢ then the corresponding
query expresses a counterfactual. If ¢ = ¢. then the query expresses a
hypothesis about the system’s future behavior. (In this case we often
omit ¢ from the query and simply write holds_after(l,[an, .. .,a1]).) The
definition below formalizes this intuition. Let D = (A,T') be a domain

description with the current moment n, and T' be the transition diagram
defined by A.
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1. a query holds_at(l,t) is a consequence of D if for every possible
history g, a1,01,...,an,0, of D, 0 <t < n, and we have | € oy;

2. a query currently(l) is a consequence of D if for every possible
history o9, a1,01, ..., 0,0, of D, we have | € o,;

3. a query holds_after(l,|a.,,...,a}],t) is a consequence of D if for
every possible history og,a1,01,...,an,0, of D, 0 <t < n and

/ ! !

al,...,al, is executable in oy and for any path o{, a}, 01, ..., al,, 00,

of T such that oy =0y, | € 0),.

The consequence relation between query () and domain description D =
(A,T) will be denoted by I' =4 Q.

Architecture for intelligent agents

We now demonstrate how the notion of consistency of a domain de-
scription and the consequence relation I' =4 @ can be used to describe
an architecture of an intelligent agent. In this architecture the set of
elementary actions is divided into two parts: the actions which can be
performed by an agent and exogenous actions performed by nature or
other agents in the domain. We assume that at each moment ¢ of time
the agent’s memory contains domain description D = (A,T') and a par-
tially ordered set G of agent’s goals. By a goal we mean a finite set
of fluent literals the agent wants to make true. Partial ordering corre-
sponds to comparative importance of goals. The agent operates under
the assumption that it was able to observe all the exogenous actions.
This assumption can however be contradicted by observations which
may force the agent to conclude that some exogenous actions in the past
remained unobserved. An agent will repeatedly execute the following
steps

1. observe the world and incorporate the observations in I';

2. select one of the most important goal g € G to be achieved;
3. find plan aq,...,a, to achieve g;

4. execute ay;

During the first step the agent does two things. First it observes exoge-
nous actions {by,...,bg} which happen at the current moment of time,
tp. These observations are recorded by simply adding the statements
happened(b;, ty) (1 <i < k) to the current set of observations, I'y. Now
the agent’s history is encoded in the new set of axioms, I with the
current moment of time, ¢. Second, the agent observes the truth of
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some fluent literals, O. If the agent observed all the exogenous actions
which happen at time t; then the domain description (4,IVU O) where
O = {observed(l;,t') : l; € O and I; is observed to be true at t'} will be
consistent. Otherwise it may be inconsistent. In the latter case the
new observations should be explained by assuming some occurrences of
unobserved exogenous actions. This suggests that instead of adding ob-
servations to the domain description! the agent should first check their
consistency and, if necessary, provide a suitable explanation. In precise
terms, by ezplanation of unexplained observations O we mean a collec-
tion of statements
Hy = {happened(a;,ty) : tp < t., a; is an elementary exogenous action}
such that

' U Hp U O is consistent (1.3)

If O can be explained in several possible ways the agent should be sup-
plied with some mechanism of selecting a most plausible one. (To sim-
plify the discussion we assume that this is possible). Let us denote the
set of axioms of the agent after the first step of the loop by I'; and its
current time by ¢;. During the second stage the agent selects a goal
g € G which will, at least for a while, determine its future actions. The
goals in G may have priorities which depend on the current state of the
domain and hence the agent may change its immediate goal during the
next execution of the loop. Meanwhile however it goes to step three and
looks for a plan to achieve g. This planning problem can be reduced to
finding a sequence « of actions such that

[ =4 holds_after(g, ) (1.4)

After (1.4) is solved and a plan @ = ay, . .., ay, is found the agent proceeds
to execute the first action, aj, records occurs_at(ay,t1) in the domain
history, and goes back to step one of the loop. Of course this architecture
is only valid if computation performed during the execution of the body
of the loop is fast enough to not allow the possibility of occurrence of
exogenous actions, that may change the relevant characteristics of the
domain, before a; is performed. In many situations the process can be
made considerably faster by pre-computing solutions of (1.3) and (1.4)
for certain goals. A solution for (1.4) for instance can be stored in the
agent’s memory as rules of the form, say,

if T |Ea currently(l) then execute(ay)
else execute(az)

Agents whose ability to plan is limited to the use of such rules are called
reactive. Otherwise, we characterize them as deliberative. Normally,
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agents should have both? deliberative and reactive components. Notice,
however, that even reactive actions depend on the current knowledge of
an agent and the choice of such actions may require a certain amount of
reasoning. (Of course, checking if  holds in the current situation requires
substantially less effort than planning or explaining observations.)

Example 2 Consider a domain with two locations, home and airport,
and two objects, money and a ticket. An agent, Jack, is capable of
driving from his current location to the other one and of getting money
and ticket. The last action however is possible only if Jack has money
and is located at the airport. Jack views the world in terms of two fluents,
jack_at(L) and has_jack(O). The only exogenous action relevant to Jack
is that of losing an object. Let us construct an action description A of
Jack’s world and use it to model Jack’s behavior. Even though all the
steps in the example can be easily proven the discussion will be informal.
Later we will comment on the ways to automate all the reasoning steps.

Types :

location(home). object(money).

location(airport). object(ticket).
Fluents :
fluent(jack_at(L)) < location(L).
fluent(has_jack(O)) «— object(0).
Actions :
agent_action(drive_to(L)) <« location(L).
agent_action(get(0)) «— object(0).
exogenous_action(lose(O)) < object(O).

Causal Laws :

impossible_i f (drive_to(L), [jack_at(L)]).
causes(drive_to(L), jack_at(L),]]).
impossible_i f (get(ticket), [-has_jack(money)]).
impossible_i f(get(ticket), [-jack_at(airport))). A
causes(get(0), has_jack(0),[]).
causes(lose(0), mhas_jack(O),[])-
caused(—jack_at(L1), [jack-at(L2), L1 # L2]).
impossible_i f([get(O), drive_to(L)], []).
impossible_i f([get(O1), lose(O2)], []).
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Let us now assume that Jack’s goal is to have a ticket. He starts with
step one of the algorithm and records the following observations:

Axioms :
observed(has_jack(money), 0)
observed(—has_jack(ticket),0)
observed(jack_-at(home),0).

[y

Since Jack has only one goal the selection is trivial. He goes to the
planning stage, solves equation

Ty =4 holds_after(has_jack(ticket), X)

and finds a plan, a; = [drive_to(airport), get(ticket)]. (We assume that
he has enough time to find the shortest plan). Jack proceeds by executing
the first action of this plan and recording this execution in the history
of domain. The new collection of axioms is as follows:

I'y =Ty U {happened(drive_to(airport),0)}.

Now the current time is 1 and Jack continues his observations. Suppose
he observes that his money is missing. This observation contradicts
(A,T'1) and hence needs an explanation. The only explanation, obtained
by solving equation

I'y UY U {observed(—has_jack(money), 1)} is consistent,
is Y = {happened(lose(money),0)}, and hence
I’y = T'1U { happened(lose(money), 0), observed(—has_jack(money), 1)}.

Assuming that Jack’s goal is not changed, he proceeds to solve the
equation 'y =4 holds_after(has_jack(ticket), X), finds a new plan,
ag = [get(money), get(ticket)], gets money, goes back to step one and
hopefully proceeds toward his goal without further interruptions.

3. REASONING ALGORITHMS

The logic programming community has developed a large number
of reasoning algorithms which range from the SLDNF resolution im-
plemented in traditional Prolog systems to the XSB resolution (Chen
et al., 1995) implementing the well-founded semantics (Van Gelder et al.,
1991), and comparatively recent techniques which can be used for com-
puting answer sets of A-Prolog (Cholewiniski et al., 1996; Niemela and
Simons, 1997; Faber et al., 1999; Wang and Zaniolo, 2000). The lat-
ter form the basis for answer set programming advocated in (Niemela,
1999; Marek and Truszczynski, 1999). In this section we illustrate how
these algorithms can be used to implement the above architecture and
to perform the agent’s reasoning tasks.
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Planning

In this subsection we discuss model-theoretic planning using A-Prolog.
In this approach, the answer sets of the program encode possible plans.
We slightly differ from the previous work on answer set planning by
emphasizing the use of “planning modules” to restrict the kind of plans
that we are looking for. These modules can allow concurrency or force
sequentiality of plans, specify preference between actions, incorporate
reactive components into deliberative planning, etc. They can also con-
tain a domain dependent control information.

We start with assuming that the corresponding domain description D =
(A,T') is consistent and deterministic, the set I' of axioms is complete,
i.e. uniquely determines the initial situation, and the goal g is a set of
fluent literals. We also assume that time is represented by integers from
[0, N], that m is the maximum length of a plan the agent is willing to
search for, and that t. +m < N.

To find a solution of equation (1.4) we consider a program
Iy =T(N)UAUTUR

where R consists of rules

occurs_at(A,T) « happened(A,T).

holds_at(L,T) < observed(L,T).

agent_action(a). (for any agent action a.)

Next we discuss how to construct planning modules of agents with differ-

ent degrees of sophistication. We start with a simple planning module,
PMy(m):

(pl) found — t.<T <t.+m,
hold_at(g,T).
(p2) «— not found.
(p3) occurs_at(A,T) < t.<T <t.+m, PMy(m)

not hold_at(g,T),
agent_action(A),
not —occurs_at(A,T).

Let
P()(m) =1l;U PM()(m)

The use of Py(m) for planning is based on the following observation:

Let 0 < k < m. A sequence a = ag,...,a; of actions is a plan for g iff
there is an answer set S of Py(m) such that for any a; from «,
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a; = {a : a is elementary and occurs_at(a,t. + i) € S}. (Due to the
space limitations we cannot give a proof of this statement. The idea
is however rather simple. One can notice that at any future moment ¢
such that the goal is not yet satisfied the rule (p3) above and the rule
(6) from program II(NN) generates all possible sets of occurrences of the
agent’s actions at t. Other rules of II; reject those which do not lead to
the plan.)

A plan of minimal length can be found by checking existence of answer
sets of Py(1), Py(2), ..., Py(m) or by varying the depth of a plan in some
other way.

Similar techniques can be used to look for plans in incomplete domain
descriptions. If, for instance, the values of fluents f1, ..., fr in the initial
situation are unknown the planning can be done as follows:

1. Expand Py(m) by the rules:

observed(fi,0) < not observed(—f;,0).
observed(—f;,0) <« not observed(f;,0).

2. Find an answer set S of the resulting program Pj;

3. Let X be the set of propositions of the form occurs_at(a,t) from S
and check if PjU X |4 g. If the test succeeds then X defines a plan.
Otherwise the process can be repeated, i.e. we can look for another an-
swer set. If all answer sets are analyzed and a plan is still not found it
does not exist. Alternatively, we can look for conditional plans, incor-
porate testing of values of fluents into planning or use a variety of other
techniques.

A-Prolog can be used to implement planning modules which are different
from PMjy(m). For instance, the module PMj(m) consisting of the first
two rules of PMy(m) and the rules

occurs_at(A,T) — t.<T<t.+m,
agent_action(A),
not other_occurs(A,T),
not hold_at(g,T). PM,;
other_occurs(A,T) + t.<T <t.+m,
agent_action(A;), A # Ay,
occurs_at(Ay,T).

restricts the agent’s attention to sequential plans. (These rules can be
viewed as A-Prolog implementation of the choice operator from (Sacca



18

and Zaniolo, 1997).) As before, finding a sequential plan for g of the
length bounded by m can be reduced to computing answer sets of

Pl(m) =1II;U PMl(m)

To illustrate a slightly more sophisticated planning module let us go back
to Example 2 and assume that Jack always follows a prudent policy of
reporting the loss of his money to the police. This knowledge should be
incorporated in Jack’s planning module which can be done by adding to
it the following rules:

occurs_at(report,t.) <+ Ty <t
happened(lose(money), Tp),
not reported_after(Tp).

reported_after(Ty) <+ To<T < te,
happened(report,T).

The resulting rules allow the agent to create plans which include a simple
reactive component.

Now suppose that Jack can buy his ticket either using a credit card
or paying cash, and that he prefers to pay cash if he has enough. To
represent this information we introduce two new objects, cash and card
and two static causal laws caused(has_jack(money), [has_jack(card)])
and caused(has_jack(money), [has_jack(cash)]). Jack’s preference will
be represented by adding the following rules to his planning module:

occurs_at(pay(cash),T) < occurs_at(get(0),T),
holds_at(has_jack(cash),T).

occurs_at(pay(card),T) < occurs_at(get(O),T),
holds_at(—has_jack(cash),T).

From now on Jack will plan to pay with cash if possible and use the
credit card only as the last resort. Planning modules can also be used to
incorporated heuristic information needed to speed up the planning pro-
cess. Preliminary experiments show that this allows a very substantial
increase in the efficiency of the planning process but a more systematic
investigation is needed to make really precise and general claims. It also
will be very interesting to do a serious study of the relationship between
the planning methods described in this section and satisfiability planning
(Kautz and Selman, 1992).

Explaining Observations

Now we demonstrate how answer set programming can be used for
finding explanations, i.e. for solving equation 1.3. This can be achieved
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by finding answer sets of a program

E1(m) =g U EMy(m)

where m determines the time interval in the past the agent is willing to
consider in its search for explanations and EMy(m) is an explanation
module consisting of rules

unexplained +—  member(l,0),
not holds_at(l,t.).
+— unezxplained.
occurs_at(A,T) <+ to—m<T<t,,
exogenous_action(A), » EMy(m)

not —occurs_at(A,T).
—occurs_at(A,T) <« te—m<T <t

exogenous_action(A),

not occurs_at(A,T).

Let S be an answer set of E(m) and let Hyo(m) be the set of statements
of the form happened(a;,t) such that t.—m <t < t., a; is an elementary
exogenous action, occurs_at(a;,t) € S and happened(a;,t) € S (i.e. this
occurrence of a; has not been explicitly observed). Then Hy(m) is an
explanation of O. Moreover, any explanation of O of the depth m can
be obtained in this way.

As in the case of the planning modules, the explanation module EMy(m)
can be elaborated and tailored to a particular domain. For instance
possible explanations for certain observations may be represented in the
agent’s knowledge base by a list of statements of the form

poss_exp(l,a)

where [ is a fluent literal and a is an exogenous action. (Often such a list
can be extracted automatically from the corresponding action descrip-
tion). The following explanation module, EM;(m) uses this information
to explain a single unexplained observation [ by an occurrence of a single
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exogenous action in the interval [tg,t.) where tg = t. — m:

< not holds_at(l,t.).

impossible(A,T) + impossible_if(A, P),

hold_at(P,T).
occurs_at(A,T) — th<T<t,,

poss_exp(l, A),

not impossible(A,T),

not other_occurs(A,T).
other_occurs(A,T) «+ to<T,T' <t,, EM;(m)

T #T,

occurs_at(A,T'),

not happened(A,T").
other_occurs(A,T) «+ to<T,T' <t,,

A# A,

occurs_at(A',T"),

not happened(A’,T").

Let S be an answer set of a program
Eg(m) =1II;U EMl(m)

and let Hy(m) be the set of statements of the form happened(a;,t) such
that to <t < t., a; is an elementary exogenous action, occurs_at(a;,t) €
S and happened(a;,t) ¢ S. Then Hy(m) is an explanation of O. More-
over, any explanation of O consisting of an occurrence of a single ele-
mentary exogenous action in the interval [tg, t.] can be obtained in this
way.

Checking the entailment

Now let us consider an agent’s reactive component. Implementation
of this component requires checking the condition

I =4 currently(l) (1.5)
It can be shown that this can be reduced to checking the condition
I1; E currently(l) (1.6)

As before, this task can be accomplished by the constraint satisfaction
approach in answer set programming. For a very broad class of deter-
ministic domain descriptions this condition can be also checked by using
more traditional Prolog or XSB systems with a query currently(l) and
a simple modification of program Il as an input. The modification re-
quires addition of information about types of variables in the bodies of
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some rules. It is needed to make sure that reasoning done by Prolog
(XSB) on I1,; is sound and complete with respect to queries of the type
currently(l). (The corresponding proof follows the lines of the similar
proof in (Baral et al., 1997) and demonstrates that for this input the
Prolog interpreter always terminates, does not flounder, and does not
require the occur check. This allows to reduce the proof of soundness
and completeness of the interpreter to soundness and completeness of
SLDNF resolution.) Ramifications of the choice of inference engine used
for solving this and other problems are not entirely clear and require
further investigation. We believe however that in this particular case
diversity can be beneficial.

Finally, let us look at the situation in which the agent found a plan
ai,...,a,, executed action a;, modified I" to record new observations
and discovered that its goal, g, is not changed. In this case it seems
natural to start the planning with simply checking if

I’ =4 holds_after(g, [an,- .., a2]) (1.7)

As before for complete, deterministic, and acyclic domain descriptions (
Watson, 1999a) this can be done by running a Prolog interpreter on the

query

holds_after(g, [an,...,a2],T) (1.8)
and program II. obtained by expanding II; by rules
impossible(A, S, T) + impossible_if(A, P)
hold_after(P,S,T).
possible(A, S, T) < not impossible(A, S,T).
,T) < holds_at(L,T).

holds_after(L,|
holds_after(L,[A|S],T) < possible(A,S,T),
causes(A, L, P),
hold_after(P,S,T).
holds_after(L,S,T) < caused(L, P),
hold_after(P,S,T).
holds_after(L,[A|S],T) < possible(A,S,T),
holds_after(L,S,T),
not holds_after(L,[A|S], T).

As before typing information should be added to the program to guar-
antee soundness and completeness of this method.

4. CONCLUSION

We have proposed a model of a simple intelligent agent acting in a
changing environment. A characteristic feature of this model is its ex-
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tensive use of a declarative language A-Prolog. The language is used for
describing the agent’s knowledge about the world and its own abilities
as well as for precise mathematical characterization of the agent’s tasks.
We demonstrated how the agent’s reasoning tasks can be formulated as
questions about programs of A-Prolog and how these questions can be
answered using various logic programming algorithms. A high expres-
siveness of the language allows one to represent rather complex domains
not easily expressible in more traditional languages. The corresponding
knowledge bases have a reasonably high degree of elaboration tolerance.
Recent advances in logic programming theory allow one to prove cor-
rectness of these algorithms for a broad range of domains. New logic
programming systems allow their implementation. Four such systems,
CCALC, DeRes, DLV, and SMODELS, were demonstrated at the LBAI
workshop. These systems were used to find plans from Example 2 as
well as to solve much more complex tasks. Some experimental results
aimed at testing the efficiency of the system are rather encouraging.
The current rate of improvement of the systems performance and rapid
advances in our understanding of methodology of programming in A-
Prolog allow us to believe in the practicality of this approach. Some
applications using XSB, DLV, Smodels and CCALC can be found in (
Watson, 1999b; Soininen and Niemela, 1999; Erdem et al., 2000; McCain
and Turner, 98; Cui et al., 1999) and the systems can be reached from
http://www.cs.utexas.edu/users/tag/.
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Notes

1. To the best of our knowledge the idea that “observations should be added together
with possible explanations” was first published in (Reiter, 1995).

2. More details on the combination of reactive and deliberative reasoning in the context
of action based languages can be found in (Baral and Son, 1998). It also contains more
detailed comparison to the reactive aspects of ConGolog (De Giacomo et al., 1997).
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