
Classical Negation in Logic Programs and

Disjunctive Databases

Michael Gelfond

University of Texas at El Paso

El Paso, Texas 79968

Vladimir Lifschitz

University of Texas at Austin

Austin, Texas 78712

Abstract

An important limitation of traditional logic programming as a knowledge

representation tool, in comparison with classical logic, is that logic

programming does not allow us to deal directly with incomplete

information. In order to overcome this limitation, we extend the class

of general logic programs by including classical negation, in addition

to negation-as-failure. The semantics of such extended programs is

based on the method of stable models. The concept of a disjunctive

database can be extended in a similar way. We show that some facts

of commonsense knowledge can be represented by logic programs and

disjunctive databases more easily when classical negation is available.

Computationally, classical negation can be eliminated from extended

programs by a simple preprocessor. Extended programs are identical to

a special case of default theories in the sense of Reiter.

1 Introduction

An important limitation of traditional logic programming as a

knowledge representation tool, in comparison with classical logic, is that

logic programming does not allow us to deal directly with incomplete

information. A consistent classical theory partitions the set of sentences

into three parts: A sentence is either provable, or refutable, or

undecidable. A logic program partitions the set of ground queries into

only two parts: A query is answered either yes or no. This happens

because the traditional declarative semantics of logic programming

automatically applies the closed world assumption to all predicates,

1

and each ground atom that does not follow from the facts included in

the program is assumed to be false. Procedurally, the query evaluation

methods of logic programming give the answer no to every query that

does not succeed; they provide no counterpart of undecidable sentences,

which represent the incompleteness of information in classical axiomatic

theories.

In order to overcome this limitation, we propose to consider

\extended" logic programs, that contain classical negation : in addition

to negation-as-failure not. General logic programs provide negative

information implicitly, through closed-world reasoning; an extended

program can include explicit negative information. In the language

of extended programs, we can distinguish between a query which fails

in the sense that it does not succeed and a query which fails in the

stronger sense that its negation succeeds.

1

A general logic program [Lloyd1984] can be de�ned as a set of rules

of the form

A

0

 A

1

; : : : ; A

m

;not A

m+1

; : : : ;not A

n

;

where n � m � 0, and each A

i

is an atom. The word \general" stresses

the fact that such rules may contain negation, and, consequently, are

more general than Horn clauses.

Recall that a literal is a formula of the form A or :A, where A is an

atom. The negation sign in the negative literal :A represents classical

negation, not negation-as-failure, so that expressions of the form not A,

occurring in general logic programs, are not literals according to this

de�nition.

An extended logic program is a set of rules of the form

L

0

 L

1

; : : : ; L

m

;not L

m+1

; : : : ;not L

n

; (1)

where n � m � 0, and each L

i

is a literal.

The semantics of extended programs described below is an extension

of the stable model semantics for general logic programs proposed in

[Gelfond and Lifschitz1988]. The stable model semantics de�nes when

a set S of ground atoms is a \stable model" of a given program. A

\well-behaved" program has exactly one stable model, and the answer

that such a program is supposed to return for a ground query A is yes or

no, depending on whether A belongs to the stable model or not. (The

existence of several stable models indicates that the program has several

possible intepretations.) For an extended program, we will de�ne when

a set S of ground literals quali�es as its answer set. If the program

doesn't contain classical negation, then its answer sets are the same as

2

its stable models. A \well-behaved" extended program has exactly one

answer set, and this set is consistent. The answer that the program

is supposed to return for a ground query A is yes, no or unknown,

depending on whether the answer set contains A, :A, or neither. The

answer no corresponds to the presence of explicit negative information

in the program.

Consider, for instance, the extended program �

1

consisting of just

one rule:

:Q not P:

Intuitively, this rule means: \Q is false, if there is no evidence that P

is true." We will see that the only answer set of this program is f:Qg.

The answers that the program should give to the queries P and Q are,

respectively, unknown and false.

As another example, compare two programs that don't contain not:

:P ; P :Q

and

:P ; Q :P:

Let's call them�

2

and �

3

. Each of the programs has a single answer set,

but these sets are di�erent. The answer set of �

2

is f:Pg; the answer

set of �

3

is f:P;Qg. Thus our semantics is not \contrapositive" with

respect to and :; it assigns di�erent meanings to the rules P :Q

and Q :P . The reason is that it interprets expressions like these as

inference rules, rather than conditionals. (For positive programs, both

points of view lead to the same semantics.) The language of extended

programs includes classical negation, but not classical implication.

This approach has important computational advantages. We will

see that, under rather general conditions, evaluating a query for

an extended program can be reduced to evaluating two queries for

a program that doesn't contain classical negation. Our extension

of general logic programs hardly brings any new computational

di�culties.

2

The class of extended programs is of interest in connection with

the problem of relation between logic programming and nonmonotonic

formalisms (see [Przymusinski1988] for an overview). As shown in

[Bidoit and Froidevaux1987], general logic programs can be viewed as

default theories in the sense of Reiter [rei80]. A similar reduction is

applicable to extended programs, and they turn out to be a notational

variant of a natural, easily identi�able subset of default logic. We

can say that the class of extended programs is the place where logic

programming meets default logic halfway.

3

2 Answer Sets

The semantics of extended programs treats a rule with variables as

shorthand for the set of its ground instances. It is su�cient then to

de�ne answer sets for extended programs without variables. This will

be done in two steps.

First, consider extended programs without variables that, in

addition, don't contain not (m = n in every rule (1) of the program).

Extended programs without not correspond to the positive (Horn) case

of traditional logic programming. Every such program will have exactly

one answer set. This set will consist, informally speaking, of all ground

literals that can be generated using

(i) the rules of the program, and

(ii) classical logic.

Obviously, there is only one case when a set of ground literals may

logically entail a ground literal that doesn't belong to it: when it

contains a pair of complementary literals A, :A. This observation

suggests the following de�nition.

Let � be an extended program without variables that doesn't

contain not, and let Lit be the set of ground literals in the language of

�. The answer set of � is the smallest subset S of Lit such that

(i) for any rule L

0

 L

1

; : : : ; L

m

from �, if L

1

; : : : ; L

m

2 S, then

L

0

2 S;

(ii) if S contains a pair of complementary literals, then S = Lit.

We will denote the answer set of a program � that doesn't contain

negation-as-failure by �(�).

If � is a positive program, i.e., a program containing neither not nor

:, then condition (ii) is trivial, and �(�) is simply the minimal model

of �. It is also clear that the answer sets given above for programs �

2

and �

3

are in agreement with this de�nition:

�(�

2

) = f:Pg; �(�

3

) = f:P;Qg:

Now let � be any extended program without variables. By Lit we

again denote the set of ground literals in the language of �. For any set

S � Lit, let �

S

be the extended program obtained from � by deleting

(i) each rule that has a formula not L in its body with L 2 S, and

(ii) all formulas of the form not L in the bodies of the remaining rules.

4

Clearly, �

S

doesn't contain not, so that its answer set is already de�ned.

If this answer set coincides with S, then we say that S is an answer

set of �. In other words, the answer sets of � are characterized by the

equation

S = �(�

S

): (2)

For instance, in order to check that f:Qg is an answer set of the

program �

1

in the example above, we should construct the program

�

f:Qg

1

. This program contains one rule,

:Q

(the result of deleting not P from the only rule of �

1

). The answer set

of this program is f:Qg, the set that we started with. Consequently,

this is indeed an answer set of �

1

. It is easy to check that no other

subset of literals has the same �xpoint property.

The answer sets of � are, intuitively, possible sets of beliefs that a

rational agent may hold on the basis of the information expressed by

the rules of �. If S is the set of ground literals that the agent believes

to be true, then any rule that has a subgoal not L with L 2 S will be of

no use to him, and he will view any subgoal not L with L 2 S as trivial.

Thus he will be able to replace the set of rules � by the simpli�ed set

of rules �

S

. If the answer set of �

S

coincides with S, then the choice

of S as the set of beliefs is \rational."

We need to verify, of course, that the second, more general de�nition

of answer sets, when applied to a program without not, is equivalent

to the �rst de�nition. This is an immediate consequence of the fact

that, for such �, �

S

= �, so that the �xpoint condition (2) turns into

S = �(�).

On the other hand, if � doesn't contain :, then �

S

is a

positive program, and its answer set doesn't contain negative literals.

Consequently, an answer set of a general logic program|a program

without classical negation|is a set of atoms. The de�nition of an

answer set coincides in this case with the de�nition of stable model given

in [Gelfond and Lifschitz1988]. (Notice that the sign : stands there for

negation-as-failure and thus corresponds to not in the notation of this

paper.) We conclude that the answer sets of a general logic program are

identical to its stable models. In this sense, the semantics of extended

programs, applied to general programs, turns into the stable model

semantics. But there is one essential di�erence: The absence of an atom

A in the stable model of a general program represents the fact that A

is false; the absence of A and :A in the answer set of an extended

program is taken to mean that nothing is known about A. We will

return to this point in the next section, and then again in Section 6.

5

We think of answer sets as incomplete theories (rather than \three-

valued models," used, for instance, in [Fitting1985], [Przymusinski1989]

and [Van Gelder et al.1990]). When a program has several answer

sets, it is incomplete also in another sense|it has several di�erent

interpretations, and the answer to a query may depend on the

interpretation.

An extended program is contradictory if it has an inconsistent

answer set (that is, an answer set containing a pair of complementary

literals). For instance, the program �

4

, consisting of the rules

P ; :P ;

is contradictory. It is clear that a general logic program cannot be

contradictory.

Proposition 1. Every contradictory program has exactly one answer

set|the set of all literals, Lit.

This proposition shows that our approach to negation is di�erent

from the \paraconsistent" approach of [Blair and Subrahmanian1989].

Proof. It is clear from the de�nition of answer sets that any answer

set containing a pair of complementary literals coincides with Lit. The

fact that a contradictory program cannot have any other answer set is

a consequence of the following lemma:

Lemma 1. An extended logic program cannot have two answer sets

of which one is a proper subset of the other.

Proof. Let S, S

0

be answer sets of �, and S � S

0

. Clearly, �

S

0

� �

S

.

It follows that �(�

S

0

) � �(�

S

), i.e., S

0

� S. Consequently, S = S

0

.

Being noncontradictory doesn't guarantee the existence of answer

sets. This can be illustrated by any general logic program without

stable models, such as P not P .

3 Representing Knowledge Using Classi-

cal Negation

Sometimes the use of negation-as-failure in logic programs leads to

undesirable results that can be eliminated by substituting classical

negation for it. We are indebted to John McCarthy for the following

example. A school bus may cross railway tracks under the condition

6

that there is no approaching train. This fact can be expressed by the

rule

Cross not Train

if the absence of the atom Train in the database is interpreted as the

absence of an approaching train. But this knowledge representation

convention is unacceptable if information about the presence or absence

of a train may be not available. If, for instance, Train is not included

in the database because the driver's vision is blocked, then we certainly

don't want the bus to cross tracks.

The situation will be di�erent if classical negation is used:

Cross :Train:

Then Cross will not belong to the answer set unless the negative fact

:Train is included.

3

The di�erence between not P and :P in a logic program is essential

whenever we cannot assume that the available positive information

about P is complete, i.e., when the \closed world assumption"

[Reiter1978] is not applicable to P . The closed world assumption for a

predicate P can be expressed in the language of extended programs by

the rule

:P (x) not P (x): (3)

When this rule is included in the program, not P and :P can be used

interchangeably in the bodies of other rules. Otherwise, we use not P

to express that P is not known to be true, and :P to express that P

is false.

For some predicates, the assumption opposite to (3) may be

appropriate:

P (x) not :P (x): (4)

For instance, the set of terminal vertices of a directed graph can be

de�ned by the following program �

5

:

:Terminal(x) Arc(x; y);

Terminal(x) not :Terminal(x):

For any predicate P , we are free to include either of the rules

(3), (4) in the database, or to leave out both of them. Consider the

following example. Jack is employed by Stanford University, and Jane

is employed by SRI International:

Employed(Jack;Stanford) ;

Employed(Jane;SRI) :

7

Any employed individual has an adequate income:

Adequate-Income(x) Employed(x; y):

The answer set of the program with these 3 rules is

fEmployed(Jack;Stanford);Employed(Jane;SRI);

Adequate-Income(Jack);Adequate-Income(Jane)g:

This set contains no negative literals, and it doesn't allow us to assert,

for instance, that Jack is not employed by SRI. The claim that the

employment information in the database is complete is expressed by

the closed world assumption for Employed:

:Employed(x; y) not Employed(x; y):

Appending this rule to the program will add the literals

:Employed(Jack;SRI);:Employed(Jane;Stanford)

to the answer set. If the available employment information is complete

for Stanford, but not for SRI, a more restricted rule should be used

instead:

:Employed(x;Stanford) not;Employed(x;Stanford):

The following example of the use of negation in the 1981 British

Nationality Act is quoted in [Kowalski1989]: \After commencement no

person shall have the status of a Commonwealth citizen or the status

of a British subject otherwise than under this Act." This statement,

in essense, postulates the closed world assumption for some predicates.

Kowalski remarks that there is no need to represent statements of this

kind explicitly in a (general) logic program, because they are implicit in

the semantics of the language. He seems to agree, however, that it may

be desirable to permit predicates whose de�nitions are not assumed

to be complete, and to require an \explicit declaration" whenever

a completeness assumption is made. In the language of extended

programs, such declarations are represented by rules of the form (3).

We do not commit ourselves to any particular use of the closed

world assumption by deciding which of two opposite predicates

will be represented by a predicate constant, and which one will

be considered negative. In this sense, the language of extended

programs is symmetric, like default logic [Reiter1980], autoepistemic

logic [Moore1985] and formula circumscription [McCarthy1986].

8

On the contrary, the modi�cation of our approach proposed in

[Kowalski and Sadri1990] is not symmetric.

In Section 6 we say more on the use of the closed world assumption

in extended programs.

Here is one more example in which both kinds of negation are

used. College X uses the following rules for awarding scholarships to

its students:

1. Every student with the GPA of at least 3.8 is eligible.

2. Every minority student with the GPA of at least 3.6 is eligible.

3. No student with the GPA under 3.6 is eligible.

4. The students whose eligibility is not determined by these rules

are interviewed by the scholarship committee.

The rules are encoded in the following extended program:

Eligible(x) HighGPA(x);

Eligible(x) Minority(x);FairGPA(x);

:Eligible(x) :FairGPA(x);

Interview(x) not Eligible(x);not :Eligible(x):

The last rule says: Interview(x), if there is no evidence that Eligible(x)

and there is no evidence that :Eligible(x).

This program is to be used in conjunction with a database specifying

the values of the extensional predicates Minority, HighGPA and

FairGPA. Assume, for instance, that the following two facts are

available about one of the students:

FairGPA(Ann) ; :HighGPA(Ann) :

The database contains no information about Minority(Ann). (Ann is

a minority student who, as a matter of principle, declined to state this

fact on her application.)

The extended program �

6

, consisting of these 6 rules, has one

answer set:

fFairGPA(Ann);:HighGPA(Ann); Interview(Ann)g: (5)

9

4 Reduction to General Programs

Let � be an extended program. For any predicate P occurring in �,

let P

0

be a new predicate of the same arity. The atom P

0

(: : :) will be

called the positive form of the negative literal :P (: : :). Every positive

literal is, by de�nition, its own positive form. The positive form of a

literal L will be denoted by L

+

. �

+

stands for the general program

obtained from � by replacing each rule (1) by

L

+

0

 L

+

1

; : : : ; L

+

m

;not L

+

m+1

; : : : ;not L

+

n

:

For instance, �

+

5

is the program

Terminal

0

(x) Arc(x; y);

Terminal(x) not Terminal

0

(x):

This is, of course, the usual de�nition of Terminal in the language of

general logic programs.

For any set S � Lit, S

+

stands for the set of the positive forms of

the elements of S.

Proposition 2. A consistent set S � Lit is an answer set of � if and

only if S

+

is an answer set of �

+

.

In this sense, the mapping � 7! �

+

reduces extended programs

to general programs|even though �

+

gives no indication that P

0

represents, intuitively, the negation of P .

4

The proof of Proposition 2 is based on two lemmas.

Lemma 2. For any noncontradictory program � that doesn't contain

not,

�(�

+

) = �(�)

+

:

Proof. Since � is noncontradictory, �(�) is simply the set of literals

that can be generated by applying (the ground instances of) the rules

of �

L

0

 L

1

; : : : ; L

m

as inference rules. Similarly, �(�

+

) is the set of atoms that can be

generated by applying the corresponding positive rules,

L

+

0

 L

+

1

; : : : ; L

+

m

:

It is clear that the atoms derivable using these positive rules are exactly

the positive forms of the literals derivable using the rules of the original

program.

10

Lemma 3. For any contradictory program � that doesn't contain not,

�(�

+

) contains a pair of atoms of the form A, (:A)

+

.

Proof. Consider the set S of ground literals that can be generated by

applying the rules of � as inference rules. Assume that S is consistent.

Then S = �(�), so that �(�) is consistent. But this is impossible,

because � is contradictory. Consequently, S is inconsistent. Let A, :A

be two complementary literals that belong to S, i.e., can be derived

using the rules of � as inference rules. By applying the corresponding

positive rules, we can derive A and (:A)

+

. Consequently, A; (:A)

+

2

�(�

+

).

Proof of Proposition 2. Without loss of generality we can assume

that � doesn't contain variables. Let S be a consistent set of literals.

By de�nition, S

+

is an answer set of �

+

when

S

+

= �((�

+

)

(S

+

)

);

which can be rewritten as

S

+

= �((�

S

)

+

):

Our goal is to prove the equivalence

S

+

= �((�

S

)

+

) () S = �(�

S

): (6)

Case 1: �

S

is noncontradictory. Then, by Lemma 2, the left-hand

side of (6) is equivalent to S

+

= �(�

S

)

+

, which is clearly equivalent

to the right-hand side of (6). Case 2: �

S

is contradictory. Since S is

consistent, the right-hand side of (6) is false. By Lemma 3, �((�

S

)

+

)

contains a pair A, (:A)

+

. Since S is consistent, S

+

cannot contain

such a pair, so that the left-hand side of (6) is false as well.

Corollary. If a set S � Lit is consistent, and S

+

is the only answer

set of �

+

, then S is the only answer set of �.

Proof. By Proposition 2, S is an answer set of �, so we only need to

show that � has no other answer sets. Let S

0

� Lit be an answer set

of �. Since S is consistent, � is noncontradictory (Proposition 1), so

that S

0

is consistent, too. Then, by Proposition 2, (S

0

)

+

is an answer

set of �

+

, so that (S

0

)

+

= S

+

and consequently S

0

= S.

The corollary shows how query evaluation procedures developed for

general logic programs can be applied to extended programs. If �

+

is \well-behaved" (for instance, strati�ed), and its answer set doesn't

contain a pair of atoms of the form A, (:A)

+

, then � is \well-behaved"

also, and a literal L 2 Lit belongs to the answer set of � if and only if

11

the ground atom L

+

belongs to the answer set of �

+

. The condition

L

+

2 �

+

can be veri�ed, in principle, by a usual logic programming

system. For instance, the fact that the literals included in (5) indeed

belong to the answer set of �

6

can be con�rmed by applying the Prolog

query evaluation procedure to �

+

6

and to the queries

FairGPA(Ann);HighGPA

0

(Ann); Interview(Ann):

Queries with variables can be processed in a similar way.

Remark. The consistency assumption in the statements of Proposition

2 and the corollary is essential, even if � is noncontradictory and �

+

is strati�ed. This is demonstrated by the following example �

7

:

P not :P;

Q P;

:Q P:

This program has no answer sets, although �

+

7

is a strati�ed program.

The answer set of �

+

7

is the positive form of the inconsistent set

fP;Q;:Qg.

5 Relation to Default Logic

The stable model semantics can be equivalently described in terms

of reducing logic programs to a �xpoint nonmonotonic formalism|

default logic, autoepistemic logic or introspective circumscription.

5

The

extension discussed here can be reformulated as a reduction to any of

these formalisms, too. In this section we show how the language of

extended programs can be embedded into default logic.

6

The review of default logic below is restricted to the case of

quanti�er-free defaults, su�cient for our purposes.

7

A default is an expression of the form

F G : MH

1

; : : : ;MH

k

; (7)

where F;G;H

1

; : : : ;H

k

(k � 0) are quanti�er-free formulas. F is the

consequent of the default, G is its prerequisite, and H

1

; : : : ;H

k

are its

justi�cations. A default theory is a set of defaults.

8

The operator �

D

associated with a default theory D is de�ned

as follows. For any set of sentences E, �

D

(E) is the smallest set of

sentences such that

(i) for any ground instance (7) of any default from D, if G 2 �

D

(E)

and :H

1

; : : : ;:H

k

62 E then F 2 �

D

(E);

12

(ii) �

D

(E) is deductively closed.

E is an extension for D if �

D

(E) = E.

We will identify a rule

L

0

 L

1

; : : : ; L

m

;not L

m+1

; : : : ;not L

n

with the default

L

0

 L

1

^ : : : ^ L

m

: ML

m+1

; : : : ;ML

n

; (8)

where L stands for the literal complementary to L: A = :A, :A = A.

Every extended program is identi�ed in this way with some default

theory. It is clear that a default theory is an extended program if and

only if each of its justi�cations and consequents is a literal, and each

of its preconditions is a conjunction of literals.

Proposition 3. For any extended program �,

(i) if S is an answer set of �, then the deductive closure of S is an

extension of �;

(ii) every extension of � is the deductive closure of exactly one answer

set of �.

Thus the deductive closure operator establishes a 1{1 correspon-

dence between the answer sets of a program and its extensions.

The proof of Proposition 3 is based on a few lemmas. We denote

the deductive closure of a set of sentences E by Th(E).

Lemma 4. If a set of sentences E belongs to the range of �

�

for some

extended program �, then

E = Th(E \ Lit):

Proof. Let E = �

�

(E

0

). Then E is deductively closed, so that

Th(E \ Lit) � Th(E) = E:

We'll prove the opposite inclusion by showing that Th(E\Lit) satis�es

both closure conditions characterizing �

D

(E

0

):

(i) for any ground instance F G : MH

1

; : : : ;MH

k

of a rule of �, if

G 2 Th(E \ Lit) and :H

1

; : : : ;:H

k

62 E

0

then F 2 Th(E \ Lit);

(ii) Th(E \ Lit) is deductively closed.

13

The second assertion is obvious. Assume that G 2 Th(E \ Lit) and

:H

1

; : : : ;:H

k

62 E

0

. As we have seen, Th(E \ Lit) � E, so that

G 2 E = �

�

(E

0

):

Consequently,

F 2 �

�

(E

0

) = E:

Since F is a literal, it follows that

F 2 E \ Lit � Th(E \ Lit):

Lemma 5. If S is an answer set of an extended program, then

Th(S) \ Lit = S:

Proof. Let S be an answer set of an extended program �. If �

is contradictory, then, by Proposition 1, S = Lit and consequently

Th(S) \ Lit = Lit. If not, then S is a consistent set of ground literals,

so that the ground literals that logically follow from S are precisely the

elements of S.

Lemma 6. For any extended program � and any deductively closed

set of sentences E,

�

�

(E) = Th(�(�

E\Lit

)):

Proof. Since every default in � can be equivalenly replaced by its

ground instances, it can be assumed without loss of generality that �

doesn't contain variables. We will show �rst that

�

�

(E) � Th(�(�

E\Lit

)) (9)

by proving that Th(�(�

E\Lit

)) satis�es both closure conditions

characterizing �

�

(E). Let (8) be the default corresponding to a rule

from �, such that

L

1

^ : : : ^ L

m

2 Th(�(�

E\Lit

)) (10)

and

:L

m+1

; : : : ;:L

n

62 E: (11)

>From (10) and Lemma 5,

L

1

; : : : ; L

m

2 Th(�(�

E\Lit

)) \ Lit = �(�

E\Lit

): (12)

14

Since E is deductively closed, (11) implies

L

m+1

; : : : ; L

n

62 E:

Consequently, the rule L

0

 L

1

; : : : ; L

m

belongs to �

E\Lit

. In view of

(12), it follows that

L

0

2 �(�

E\Lit

) � Th(�(�

E\Lit

)):

Furthermore, Th(�(�

E\Lit

)) is deductively closed. The inclusion (9) is

proved.

The opposite inclusion

Th(�(�

E\Lit

)) � �

�

(E)

will be proved if we show that

�(�

E\Lit

) � �

�

(E);

because �

�

(E) is deductively closed. We will do that by proving that

�

�

(E) \ Lit satis�es both closure conditions for �(�

E\Lit

). Let

L

1

; : : : ; L

m

2 �

�

(E) \ Lit (13)

for some rule L

0

 L

1

; : : : ; L

m

of �

E\Lit

. According to the de�nition

of �

S

(Section 2), this rule is obtained from a rule (7) of � by deleting

not L

m+1

,: : :,not L

n

, and, moreover,

L

m+1

; : : : ; L

n

62 E \ Lit:

Since L

m+1

; : : : ; L

n

are literals, it follows that

L

m+1

; : : : ; L

n

62 E:

By the de�nition of �

�

(E) applied to the default (8), (13) implies

L

0

2 �

�

(E), and consequently L

0

2 �

�

(E) \ Lit. Furthermore,

if �

�

(E) \ Lit contains a pair of complementary literals, then it is

inconsistent. Since �

�

(E) is deductively closed, it coincides with the

set of all sentences, so that �

�

(E) \ Lit = Lit.

Proof of Proposition 3. Let S be an answer set of �. By Lemmas

6 and 5 and by the de�nition of answer set,

�

�

(Th(S)) = Th(�(�

Th(S)\Lit

)) = Th(�(�

S

)) = Th(S):

To prove part (ii), consider an extension E of �. E \ Lit is an answer

set of �, because, by Lemmas 5 and 6,

�(�

E\Lit

) = Th(�(�

E\Lit

)) \ Lit = �

�

(E) \ Lit = E \ Lit:

On the other hand, by Lemma 4, the deductive closure of E \ Lit is

E. It remains to show that, for any answer set S, Th(S) = E only if

S = E \ Lit. Assume Th(S) = E. Then, by Lemma 5,

E \ Lit = Th(S) \ Lit = S:

15

6 The Closed World Interpretation of

General Logic Programs

Syntactically, general logic programs are a special case of extended

programs. Moreover, the \canonical" model of a \well-behaved" general

program (the unique stable model) is identical to its solution set as

de�ned in Section 2. In spite of this, there is a semantic di�erence

between a set of rules viewed as a general program, and the same set of

rules viewed as an extended program. The absence of a ground atom

A in the \canonical" model of a general program indicates that A is

false in the model, so that the correct answer to the query A is no; the

absence of A in the answer set of the same collection of rules treated

as an extended program indicates that the answer to this query should

be unknown.

For instance, the answer set of the program

Even(0) ;

Even(S(S(x)) Even(x)

is

fEven(0);Even(S(S(0))); : : :g:

Since this set contains neither Even(S(0)) nor :Even(S(0)), the

semantics of extended programs tells us that the answer to the query

Even(S(0)) is unknown|contrary to the intended meaning of this

de�nition of Even.

This meaning can be formally expressed in the language of extended

programs by adding the closed world assumption for Even:

:Even(x) not Even(x)

(Section 3). Then the solution set becomes

fEven(0);:Even(S(0));Even(S(S(0)));:Even(S(S(S(0)))); : : :g:

This example suggests that an extended program \semantically

equivalent" to a general program � can be obtained from � by adding

the closed world assumption for each of its predicates. De�ne the closed

world interpretation CW(�) of a general program � to be the extended

program obtained from � by adding the rules

:P (x

1

; : : : ; x

n

) not P (x

1

; : : : ; x

n

)

for all predicate constants P from the language of �, where x

1

; : : : ; x

n

are distinct variables, and n is the arity of P . The following proposition

shows that the answer sets of CW(�) are indeed related to the answer

sets of � as we expect. Let Pos stand for the set of all positive ground

literals in the language of �.

16

Proposition 4. If S is an answer set of a general logic program �,

then

S [f:A : A 2 Pos n Sg (14)

is an answer set of CW(�). Moreover, every answer set of CW(�) can

be represented in the form (14), where S is an answer set of �.

Proof. Without loss of generality, we can assume that � doesn't

contain variables. Then the result �

0

of replacing all rules in CW(�)

by their ground instances can be written as

� [f:A not A : A 2 Posg:

Let S be an answer set of �; we need to show that (14) is then an

answer set of �

0

. Denote (14) by S

0

. By the de�nition of �

S

(Section

2),

(�

0

)

S

0

= �

S

[f:A : A 2 Pos n Sg:

It follows that

�((�

0

)

S

0

) = �(�

S

)[f:A : A 2 PosnSg = S[f:A : A 2 PosnSg = S

0

;

so that S

0

is a solution set of �

0

.

To prove the second claim, take any answer set S

0

of �

0

, and de�ne

S = S

0

\ Pos. Then

S

0

= �((�

0

)

S

0

) = �(�

S

) [f:A : A 2 Pos n S

0

g

= �(�

S

) [f:A : A 2 Pos n Sg:

It is clear that the �rst summand in this union is the positive part of

S

0

, and the second summand is the negative part. We conclude, �rst,

that

�(�

S

) = S

0

\ Pos = S;

i.e., S

0

is an answer set of �, and, second, that

f:A : A 2 Pos n Sg = S

0

n Pos;

and consequently

S [f:A : A 2 PosnSg = S [(S

0

nPos) = (S

0

\Pos)[(S

0

nPos) = S

0

:

7 Classical Negation in Disjunctive Databases

The idea of rules with disjunctive heads has received much attention

in recent years. Many attempts have been made to de�ne a declarative

17

semantics for \disjunctive logic programs," or \disjunctive databases";

references can be found in [Przymusinski1990].

Consider a simple example. Jack is employed by Stanford University

or by SRI International; any employed individual has an adequate

income. It follows that Jack has an adequate income. It would be easy

to formalize this instance of commonsense reasoning in classical logic,

but it is not clear how to express the given facts by a logic program.

The following \disjunctive database" can be used:

Employed(Jack;Stanford) j Employed(Jack;SRI) ;

Adequate-Income(x) Employed(x; y):

(15)

We use j rather than _ in the head of the disjunctive rule, because

there is a subtle di�erence, as we will see later, between the use of

disjunction in the heads of rules and the use of disjunction in classical

logic (similar to the di�erence between the noncontrapositive and

the contrapositive classical implication, discussed in the introduction,

or to the di�erence between not and :).

An extended disjunctive database is a set of rules of the form

L

1

j : : : j L

k

 L

k+1

; : : : ; L

m

;not L

m+1

; : : : ;not L

n

;

where n � m � k � 0, and each L

i

is a literal. The following de�nition

of an answer set for extended disjunctive databases generalizes the

de�nition given in Section 2.

First let � be an extended disjunctive database without variables

that doesn't contain not. As in Section 2, Lit stands for the set of

ground literals in the language of �. An answer set of � is any minimal

subset S of Lit such that

(i) for each rule L

1

j : : : j L

k

 L

k+1

; : : : ; L

m

from �, if L

k+1

; : : : ; L

m

2

S, then, for some i = 1; : : : ; k, L

i

2 S;

(ii) if S contains a pair of complementary literals, then S = Lit.

Consider, for instance, the database (15), with the second rule

replaced by its ground instances. It has two answer sets:

fEmployed(Jack;Stanford);Adequate-Income(Jack)g

and

fEmployed(Jack;SRI);Adequate-Income(Jack)g:

The answer to a query may depend now on which answer set is selected.

For instance, the answer to the query Employed(Jack;Stanford) relative

to the �rst answer set is yes, and the answer to the same query relative

18

to the second set is unknown. The answer to Adequate-Income(Jack)

is unconditionally yes.

9

Now let � be any extended disjunctive database without variables.

For any set S � Lit, let �

S

be the extended disjunctive database

obtained from � by deleting

(i) each rule that has a formula not L in its body with L 2 S, and

(ii) all formulas of the form not L in the bodies of the remaining rules.

Clearly, �

S

doesn't contain not, so that its answer sets are already

de�ned. If S is one of them, then we say that S is an answer set of �.

10

In order to apply the de�nition of an answer set to an extended

disjunctive database with variables, we �rst replace each rule by its

ground instances.

As an example, let us add the closed world assumption for Employed

:Employed(x; y) not Employed(x; y)

to (15). The new database has two answer sets:

fEmployed(Jack;Stanford);:Employed(Jack;SRI);Adequate-Income(Jack)g

and

fEmployed(Jack;SRI);:Employed(Jack;Stanford);Adequate-Income(Jack)g:

It is interesting that the embedding of extended programs into

default logic (Section 5) cannot be generalized to disjunctive databases

in a straightforward way. Compare, for instance, the rule

P j Q (16)

with the default

P _Q : : (17)

The database (16) has two answer sets, fPg and fQg; the default theory

(17) has one extension|the deductive closure of P _Q. This example

shows that there is a di�erence between j as used in this paper and

classical disjunction used in default logic.

As another example illustrating the di�erence between j and _,

consider the database

Q P;

P j :P :

(18)

Unlike the law of the excluded middle in classical logic, the second rule

cannot be dropped without changing the meaning of the database. This

rule expresses that P is either known to be true or known to be false.

Any answer set of a database containing this rule includes either P or

:P . The database consisting of just one rule Q P has one answer

set, empty; (18) has two answer sets: fP;Qg and f:Pg.

19

8 Conclusion

Extended logic programs and extended disjunctive databases use both

classical negation : and negation-as-failure not. Their semantics is

based on the method of stable models.

Some facts of commonsense knowledge can be represented by logic

programs and disjunctive databases more easily when classical negation

is available. In particular, rules of extended programs can be used for

formalizing the closed world assumption for speci�c predicates.

Under rather general conditions, query evaluation for an extended

program can be reduced to query evaluation for the general program

obtained from it by replacing the classical negation of each predicate

by a new predicate.

An extended program can be viewed as a default theory in which

every justi�cation and consequent is a literal, and every precondition

is a conjunction of literals.

A semantic equivalent of a general logic program in the language

of extended programs can be formed by adding the closed world

assumption for all predicates.

Acknowledgements

We are grateful to John McCarthy, Halina Przymusinska, Teodor

Przymusinski and Rodney Topor for comments on earlier drafts. This

research was supported in part by NSF grants IRI-8906516 and IRI-

8904611 and by DARPA under Contract N00039-84-C-0211.

Notes

1. The idea of providing for the incompleteness of information in logic-

based query answering systems, and permitting answers other than

simply yes or no for ground queries, is discussed in [Gelfond1989] and

[Gelfond and Lifschitz1990]. Our use of two kinds of negation appears

to be somewhat similar to the distinction between \strong" and \weak"

negation in [Wagner1989].

2. Notice for comparison that when Poole and Goebel [poo86]

add classical negation to Prolog, they immediately get full �rst order

logic and full resolution. This is because they interpret as classical

implication.

3. According to [Kowalski1989] and [Kowalski and Sadri1990],

many provisions in legislation have a negative form (\A declaration: : :

20

shall not be registered unless: : :"). In a preliminary version of

[Kowalski and Sadri1990], such statements were treated as integrity

constraints with one of the conditions identi�ed as \retractable." The

use of rules with negative heads seems more natural.

4. This mapping is related to the methods for translating inheri-

tance hierarchies into logic programs proposed in [Gelfond and Lifschitz1989]

and [Gelfond and Lifschitz1990]. These methods require that new pred-

icates be introduced for the purpose of representing negative conditions.

For instance, the assertion \penguins don't y" is written as

Flies

0

(x) Penguin(x);

where the positive literal Flies

0

(x) has, intuitively, the same meaning

as the negative literal :Flies(x). If we are willing to use the language of

extended programs as the object language for this translation process,

then the procedure can produce instead:

:Flies(x) Penguin(x):

The additional step of replacing :Flies by Flies

0

can be viewed as an

instance of the general transformation � 7! �

+

.

5. Historically, two of these reductions were proposed earlier than

the de�nition of stable models. A reduction to autoepistemic logic

is given in [Gelfond1987], and the equivalence of the stable model

approach to this semantics is established in [Gelfond and Lifschitz1988]

(Theorem 3). A reduction to default logic is described in

[Bidoit and Froidevaux1987] (see also [Lin and Shoham1989]) and

shown to be equivalent to stable models in [Bidoit and Froidevaux1988].

Introspective circumscription is de�ned in [Lifschitz1989], and its

relation to stable models is discussed in Sections 5.1 and 5.2 of that

paper.

6. The use of autoepistemic logic for this purpose leads to some

complications. They are related to the fact that our semantics of

extended programs is not contrapositive with respect to classical

negation: as we have seen, the rule P :Q is generally not equivalent

to Q :P . Consequently, even in programs without not, we can't

interpret as implication. To �x this problem, we can try to

modify the translation from [Gelfond1987] and insert the autoepistemic

operator L in front of each literal in the body of a rule, even if it doesn't

follow not. Then the rules P :Q and Q :P are translated

by two di�erent autoepistemic formulas, L:Q � P and L:P � Q.

Unfortunately, this translation reduces some \well-behaved" programs

to autoepistemic theories with several extensions. For instance, the

21

autoepistemic theory LP � P , corresponding to the trivial program

P P , has two extensions. The \unintended" extensions can be

eliminated by using the ideas of [Marek and Truszczy�nski1989a] and

[Marek and Truszczy�nski1989b].

7. This restriction allows us to disregard the process of

Skolemization, involved in de�ning extensions in the general case

([Reiter1980], Section 7.1).

8. In the notation of [Reiter1980], (7) would be written as

G : MH

1

; : : : ;MH

k

F

;

or G : MH

1

; : : : ;MH

k

=F . According to Reiter, a default theory may

include, in addition to defaults, some formulas that play the role of

axioms. However, this doesn't give any additional generality, because

an axiom F can be identi�ed with the default true : =F .

9. For databases without classical negation, this de�nition is

equivalent to the de�nition of a minimal model from [Minker1982].

10. This de�nition is roughly equivalent to the construction

described in Section 6 of [Przymusinski1990], applied to the

stable model semantics. (Contradictory programs are treated by

Przymusinski somewhat di�erently.)

References

[Bidoit and Froidevaux1987] Nicole Bidoit and Christine Froidevaux.

Minimalism subsumes default logic and circumscription. In Proc. of

LICS-87, pages 89{97, 1987.

[Bidoit and Froidevaux1988] Nicole Bidoit and Christine Froidevaux.

Negation by default and nonstrati�able logic programs. Technical

Report 437, Universit�e Paris XI, 1988.

[Blair and Subrahmanian1989] Howard Blair and V.S. Subrahmanian.

Paraconsistent logic programming. Theoretical Computer Science,

68:135{154, 1989.

[Fitting1985] Melvin Fitting. A kripke-kleene semantics for logic

programs. Journal of Logic Programming, 2(4):295{312, 1985.

[Gelfond and Lifschitz1988] Michael Gelfond and Vladimir Lifschitz.

The stable model semantics for logic programming. In Robert

Kowalski and Kenneth Bowen, editors, Logic Programming: Proc. of

the Fifth Int'l Conf. and Symp., pages 1070{1080, 1988.

22

[Gelfond and Lifschitz1989] Michael Gelfond and Vladimir Lifschitz.

Compiling circumscriptive theories into logic programs. In Michael

Reinfrank, Johan de Kleer, Matthew Ginsberg, and Erik Sandewall,

editors, Non-Monotonic Reasoning: 2nd International Workshop

(Lecture Notes in Arti�cial Intelligence 346), pages 74{99. Springer-

Verlag, 1989.

[Gelfond and Lifschitz1990] Michael Gelfond and Vladimir Lifschitz.

Logic programs with classical negation. In David Warren and Peter

Szeredi, editors, Logic Programming: Proc. of the Seventh Int'l Conf.,

pages 579{597, 1990.

[Gelfond1987] Michael Gelfond. On strati�ed autoepistemic theories.

In Proc. AAAI-87, pages 207{211, 1987.

[Gelfond1989] Michael Gelfond. Autoepistemic logic and formalization

of commonsense reasoning. In Michael Reinfrank, Johan de Kleer,

Matthew Ginsberg, and Erik Sandewall, editors, Non-Monotonic

Reasoning: 2nd International Workshop (Lecture Notes in Arti�cial

Intelligence 346), pages 176{186. Springer-Verlag, 1989.

[Kowalski and Sadri1990] Robert Kowalski and Fariba Sadri. Logic

programs with exceptions. In David Warren and Peter Szeredi,

editors, Logic Programming: Proc. of the Seventh Int'l Conf., pages

598{613, 1990.

[Kowalski1989] Robert Kowalski. The treatment of negation in logic

programs for representing legislation. In Proc. of the Second Int'l

Conf. on Arti�cial Intelligence and Law, pages 11{15, 1989.

[Lifschitz1989] Vladimir Lifschitz. Between circumscription and

autoepistemic logic. In Ronald Brachman, Hector Levesque, and

Raymond Reiter, editors, Proc. of the First Int'l Conf. on Principles

of Knowledge Representation and Reasoning, pages 235{244, 1989.

[Lin and Shoham1989] Fangzhen Lin and Yoav Shoham. Argument

systems: a uniform basis for nonmonotonic reasoning. In Ronald

Brachman, Hector Levesque, and Raymond Reiter, editors, Proc. of

the First Int'l Conf. on Principles of Knowledge Representation and

Reasoning, pages 245{255, 1989.

[Lloyd1984] John Lloyd. Foundations of logic programming. Springer,

1984.

23

[Marek and Truszczy�nski1989a] Wiktor Marek and Miroslaw

Truszczy�nski. Autoepistemic logic, defaults and truth maintenance.

Manuscript, 1989.

[Marek and Truszczy�nski1989b] Wiktor Marek and Miroslaw

Truszczy�nski. Relating autoepistemic and default logic. In Ronald

Brachman, Hector Levesque, and Raymond Reiter, editors, Proc. of

the First Int'l Conf. on Principles of Knowledge Representation and

Reasoning, pages 276{288, 1989.

[McCarthy1986] John McCarthy. Applications of circumscription

to formalizing common sense knowledge. Arti�cial Intelligence,

26(3):89{116, 1986.

[Minker1982] Jack Minker. On inde�nite data bases and the closed

world assumption. In Proc. of CADE-82, pages 292{308, 1982.

[Moore1985] Robert Moore. Semantical considerations on nonmono-

tonic logic. Arti�cial Intelligence, 25(1):75{94, 1985.

[Poole and Goebel1986] David Poole and Randy Goebel. Gracefully

adding negation and disjunction to prolog. In Ehud Shapiro, editor,

Proc. of the Third Int'l Conf. on Logic Programming, pages 635{641,

1986.

[Przymusinski1988] Teodor Przymusinski. On the relationship between

logic programming and non-monotonic reasoning. In Proc. AAAI-88,

pages 444{448, 1988.

[Przymusinski1989] Teodor Przymusinski. Three-valued formalizations

of non-monotonic reasoning and logic programming. In Ronald

Brachman, Hector Levesque, and Raymond Reiter, editors, Proc. of

the First Int'l Conf. on Principles of Knowledge Representation and

Reasoning, pages 341{348, 1989.

[Przymusinski1990] Teodor Przymusinski. Extended stable semantics

for normal and disjunctive programs. In David Warren and Peter

Szeredi, editors, Logic Programming: Proc. of the Seventh Int'l Conf.,

pages 459{477, 1990.

[Reiter1978] Raymond Reiter. On closed world data bases. In Herve

Gallaire and Jack Minker, editors, Logic and Data Bases, pages 119{

140. Plenum Press, New York, 1978.

[Reiter1980] Raymond Reiter. A logic for default reasoning. Arti�cial

Intelligence, 13(1,2):81{132, 1980.

24

[Van Gelder et al.1990] Allen Van Gelder, Kenneth Ross, and John

Schlipf. The well-founded semantics for general logic programs.

Journal of ACM, 1990. To appear.

[Wagner1989] Gerd Wagner. The two sources of nonmonotonicity in

vivid logic: weak falsity and inconsistency handling. In G. Brewka

and H. Freitag, editors, Proc. of the Workshop on Nonmonotonic

Reasoning, 1989.

25

