Reasoning with Prioritized Defaults

Michael Gelfond and Tran Cao Son
Computer Science Department
University of Texas at El Paso

El Paso, Texas 79968

mgelfond,tson@cs.utep.edu

Abstract

The purpose of this paper is to investigate the methodology of reasoning with pri-
oritized defaults in the language of logic programs under the answer set semantics. We
present a domain independent system of axioms, written as an extended logic program,
which defines reasoning with prioritized defaults. These axioms are used in conjunc-
tion with a description of a particular domain encoded in a simple language allowing
representation of defaults and their priorities. Such domain descriptions are of course
domain dependent and should be specified by the users. We give sufficient conditions
for consistency of domain descriptions and illustrate the use of our system by formaliz-
ing various examples from the literature. Unlike many other approaches to formalizing
reasoning with priorities ours does not require development of the new semantics of the
language. Instead, the meaning of statements in the domain description is given by the
system of (domain independent) axioms. We believe that in many cases this leads to
simpler and more intuitive formalization of reasoning examples. We also present some
discussion of differences between various formalizations.

1 Introduction

The purpose of this paper is to investigate the methodology of reasoning with prioritized
defaults in the language of logic programs under the answer set semantics. Information
about relative strengths of defaults can be commonly found in natural language descriptions
of various domains. For instance, in legal reasoning it is often used to state preference of
some laws over others, e.g.. federal laws in the U.S. can, in some cases, override the laws of a
particular state. Preferences are also used in reasoning with expert’s knowledge where they
are assigned in accordance with the degree of our confidence in different experts. Sometimes
preferences in the natural language description of the domain are given implicitly, e.g., a
conflict between two contradictory defaults can be resolved by selecting the one which is
based on more specific information. All these examples suggest that it may be useful to
consider knowledge representation languages capable of describing defaults and preferences
between them. There is a sizeable body of literature devoted to design and investigation of
such languages [1, 4, 5, 6, 10, 19, 26, 28, 29, 32]. The work is too diverse and our knowledge of

it 1s not sufficient to allow a good classification but we will try to mention several important
differences in approaches taken by the different authors. To shorten the discussion we limit
our attention to approaches based on logic programming and default logics.

Many differences in design seem to be caused by ambiguity of the very notion of default.
Sometimes defaults are understood as statements of natural language, of the form “Elements
of a class C' normally (regularly, as a rule) satisfy property P”. Sometimes this understanding
is broadened to include all statements with defeasible conclusions. The following example is
meant to illustrate the difference.

Suppose we are given a list ¢ of people and want to define the class of people not listed in ¢.
This, of course, can be done by the rule

rl. unlisted(X) < not t(X).

The conclusion of this statement can be defeated by expanding the table ¢ but cannot be
defeated by adding a fact of the form —unlisted(x) where & ¢ t. The attempt to do the latter
will (justifiably) lead to contradiction. The statement r1 is not a default according to the
first, narrow view. It is rather a universally true statement which does not allow exceptions
and can not be defeated by other (preferred) statements; of course, according to the second
view, rl is a default. Notice, that the statement “Table unlisted normally contains all the
people not contained in t” is a default according to the both views. Its logic programming
representation can have a form

2. unlisted(X) < not t(X),not ~unlisted(X).
This time the addition of —unlisted(x) where @ € t cause no contradiction.

This (and similar) differences in understanding of defaults seems to sometimes determine the
syntax of the corresponding “default” languages. The first view seems to lead to introducing
special syntax for defaults while the second uses standard logic programming syntax aug-
mented by the preference relation among the rules. According to the second view it seems
to be also more natural to consider static preference relation, i.e., to prohibit occurrence of
the preference relation in the rules of the program.

Even more important differences can be found on the semantic level. Let us accept a narrow
view of defaults and consider the theory consisting of three defaults:

dl. “Normally a”;
d2. “Normally b”
dl. “Normally ¢”

and three rules

rl. “b’s are always —a’s”;
r2. “b’s are always d’s”;
r3. “a’s are always d’s”;

There seems to be at least three equally reasonable ways to deal with this theory. We
can assume that it is inconsistent and entail everything (or nothing); We can be cautious

and refuse to apply defaults d1 and d2. In this case the only conclusion is ¢. We can be
less cautious and reason by cases entailing d supported by two different arguments. With
preference relation the situation will become even less clear since we will have an additional
difficult question of defining what we mean by a conflict between defaults.

Different choices made by the authors of default languages are expressed in their semantics
given by defining the entailment and/or the derivability relation for the language. The
corresponding new logics can often be viewed as “prioritized” versions of the existing general
purpose non-monotonic formalisms [1, 4, 5, 6, 28, 24] with new level of complexity added
in fixpoint (or other) constructions defining the semantics. The viability of new logics is
normally demonstrated by using it for formalization of some examples of default reasoning
aimed to illustrate special features of the logic and the inadequacy of other formalisms.
This process, even though useful and necessary, is often complicated by our collective lack
of experience in representing knowledge about defaults and their preferences. It is often
unclear for instance, if unintuitive answers to queries given by various formalisms can be
blamed on the formalism itself or on the inadequate representation of the original problem.
Moreover, it is often unclear what is the “common-sense”, natural language description of
the original problem of which the corresponding formal theory claims to be a representation.
This, together with technical complexity of definitions, lack of the developed mathematical
theories for new logics and the absence of clearly understood parameters which determine
the choice of the semantics make their use for knowledge representation a rather difficult
task.

This paper is the result of the authors attempts to understand some of the issues discussed
above. We wanted to design a simple language, £, capable of expressing and reasoning with
prioritized defaults satisfying (among others) the following requirements:

e Understand defaults in a narrow sense as statements of the form a’s are normally b’s.
e Allow dynamic priorities, i.e., defaults and rules about the preference relation.
e Give semantics of £ without developing new general purpose nonmonotonic formalism.

e Make sure that changes in informal parameters of the language such as properties of the
preference relation, the definitions of conflicting defaults, cautiousness or bravery in reasoning
are reflected by comparatively simple changes in the formalism.

e Make sure that some inference mechanism is available to reason with theories of £ and
some mathematical theory is available to prove properties of these theories.

We achieve these goals by mapping theories of £ (also called domain descriptions) into a class
of extended logic programs under the answer sets semantics [18]. This is done by presenting
a logic program, P consisting of (domain independent) axioms defining the use of prioritized
defaults; viewing domain descriptions of £ as collections of atoms; and defining the notion
of entailment between query ¢ and a domain description D in £ via answer set entailment
in logic programming. In other words, we say that a domain description D entails a query
q if ¢ is entailed by the logic program P U D.

This approach appears to be similar in principle to the one suggested recently in [10] (which
was not yet published when this work was completed). The resulting formalisms however

are quite different technically. The precise relationship between the two is not yet fully
investigated.

The use of the language will be illustrated by various examples from the literature. All the
examples were run using the SLG inference engine [8, 9]. We believe that the study of the
class of logic programs described by P and its variants can complement the existing work
and help to understand reasoning with prioritized defaults.

The paper is organized as follows. In the next section, we introduce the language of prioritized
defaults Lo and present a collection of axioms P. Afterwards, we show examples of domain
descriptions in , and discuss the use of the axioms in P in the Section 3. In the Section
4, we briefly discuss possible extensions of Dy. We then define the class of hierarchical
domain descriptions and discuss important properties of hierarchical domain descriptions in
the Section 5. In the Section 6, we prove the equivalent of Brewka’s approach to prioritized
logic program and our approach.

2 The Language of Prioritized Defaults

We start with describing the class Lo(0) of languages used for representing various domains
of discourse. Ly(o) is parameterized by a multi-sorted signature o containing names for
objects, functions and relations of the user’s domain. We assume that o contains two special
collections of terms used to name defaults and strict (non-defeasible) rules of the language.
We normally use terms formed by predicate symbols d; and r; to denote defaults and rules of
Ly respectively. By lit(o) and atom(o) we denote the set of all (ground) literals and atoms
of 0. Domain knowledge in Lo(c) will be described by a collection of literals of o (called
o-literals) together with statements describing strict rules, defaults, and preferences between
defaults. The syntax of such descriptions is given by the following definitions:

Definition 2.1
e o-literals are literals of Lo(0);

o if d,dy,ds are defaults names, Iy, ..., [, are literals of Lo(o) and [] is the list operator
of Prolog then

rule(r, lo, [l - ., Ln]); (1)
de fault(d, lo, [y . . ., 1n]); (2)
con flict(dy, ds); (3)
prefer(dy, dy); (4)

are literals of Lo(o).

A set D of ground literals of Lo(o) will be called domain description (with underlying
signature o).

Domain descriptions from our examples will contain non-ground literals, which will be viewed
as shorthands for their ground instantiations. The relations default, rule, conflict and
prefer will be called domain independent. Statements (1) and (2) will be called definitions
of rule r and default d respectively. Intuitively, the statement (1) is a definition of the rule r
which says that if literals [1,...,/,, are true in a domain description D then so is the literal
lo. It can be viewed as a counterpart of the logic programming rule

ZOHll,...,lm.

Literals Iy and [q,..., [, are called the head and the body of r and are denoted by head(r)
and body(r) respectively.

The statement (2) is a definition of the default d which says that normally, if I1,..., 1, are
true in D then [y is true in D. The logic programming counterpart of d is the rule

lo — ll, ceey lm, not _|lo.
As before we refer to ly as the head of d (head(d)) and to ly,..., [, as its body (body(d)).

The statement (3) indicates that d; and dy are conflicting defaults. In many interesting
cases con flict(dy,ds) will be true iff heads of defaults d; and dy are contrary literals, but
other defaults can also be declared as conflicting by the designer of the domain description.
Finally, the statement (4) stops the application of default dy if defaults d; and dy are in
conflict with each other and the default d; is applicable.

This informal explanation of the meaning of domain independent relations of Lo(c) will be
replaced by the precise definition in the next section. But first we will attempt to clarify
this meaning with the following examples.

Example 2.1 Let us assume that we are given complete lists of students enrolled in various
university departments, and that we know that in general, students can not write com-
puter programs and that computer science students do it regularly. Let us represent this
information by the domain description D.

The underlying signature o of Dy contains student names, mary, mike, sam, ..., department
names cs, cis, art, ..., appropriately typed predicate symbols ¢s_in(S, D) and can_progr(5)
read as “Student S is in department D” and “Student S can program”, and default names
of the form dy(5), d2(5), and ds(S, D).
The defaults from our informal description can be represented by statements

de fault(d1(S), —can_progr(S), [student(S)]).

de fault(d2(S), can_progr(S), [student(S),is1in(S,es)]).
Finally, the lists of students mentioned in the informal description will be represented by the
collection F' of facts:

student(mary). dept(cs). isan(mary,cs).

student(mike). dept(art). isan(mike,art).

student(sam). dept(cis). isan(sam,cis).

and the closed world assumption [30] for ¢s_in, written as the default
de fault(d3(S, D), —isan(S,D),[]).

Relations student and dept are, of course, not necessary. They are playing the role of types
and will later allow us to avoid floundering when applying the SLG inference engine to this
example.

We will assume that our domain descriptions contain statements of the form con flict(dy, ds)
for any two defaults with contrary heads and that the relation con flict is symmetric. This
will guarantee that Dy will contain con flict(di(X), d2(X)) and con flict(dz(X),d1(X)). (The

assumption will be of course enforced later by the corresponding axioms).

Informally, the domain description Dy should allow us to conclude that Mike and Sam do
not know how to program, while we should remain undecided about programming skills of
Mary. This is the case only as long as we do not assume that the second default overrides the
first one, due to the specificity principle. We can use the relation prefer from our language
to record this preference by stating

prefer(d2(X),d1(X)).

From the new domain description D; we should be able to conclude that Mary can write
programs.

The next example is meant to illustrate the behavior of conflicting defaults in the presence
of strict rules.

Example 2.2 Consider the domain description Dy consisting of two defaults

de fault(dy, p,[])
de fault(ds, ¢,[r]),

the rules

rule(ry, =p, [q])

rule(ry, =g, [p])
and the fact

r.

(Intuitively, the logic programming counterpart of Dy consists of the rules

p < not —p

g — r,not —q

p—dq

g —=p
Notice that the last two rules can be viewed as a translation into the logic programming
language of the conditional ¢’s are always not p’s.)

The intended meaning of Dy should sanction two alternative sets of conclusions: one, con-
taining p and —¢, and another containing ¢ and —p. If we expand D; by

con flict(dy, dy)
prefer(dy,dy)

the application of d; should be blocked and the new domain description D3 should entail
q and —p. Notice, that if conflict(dz,d;) were not added to the domain description then
addition of prefer(dy,d;) would not alter the conclusions of D,. This is because preference
only influences application of conflicting defaults.

More examples of the use of the language Ly for describing various domains will be found
in the following sections. In the next section we give a precise definition of entailment from
domain descriptions which captures the intended meaning of statements of Lo.

2.1 Axioms of P

In this section we present a collection P, of axioms defining the meaning of the domain inde-
pendent relations of Lo(o). The axioms are stated in the language of logic programs under
the answer set semantics. They are intended to be used in conjunction with domain descrip-
tions of Lo(o) and to define the collection of statements which (strictly and/or defeasibly)
follow from the given domain description D. More precisely, we consider two basic relations
holds(l) and holds_by_de fault(l) defined on literals of Lo(o) which stand for “strictly holds”
and “defeasibly holds”, respectively. The query language associated with domain descrip-
tions of Lo(o) will consist of ground atoms of the form holds_by_de fault(l), holds(l), and
their negations. In what follows, by laws(D) we denote the set of statements of the forms

(1) and (2) from definition 2.1 which belong to D; fact(D) = D\ laws(D).

Definition 2.2 We say that a domain description D entails a query ¢ (D [¢) if ¢ belongs
to every answer set of the program P,(D) = P, U{holds(l) | | € fact(D)} Ulaws(D).

Program P! consists of the following rules:

Non-defeasible Inference:

holds(L) « rule(R, L, Body), (1)
hold(Body).
hold([). (2)
hold([H|T]) «+ holds(H), (3)
hold(T).

Tn what follows we assume that o is fixed and omit reference to it whenever possible.

7

The first axiom defines the relation holds which is satisfied by a Lo(o) literal [iff [is non-
defeasibly true in the domain description D. The next two axioms define similar relation on
the lists of literals in Lo(0), i.e., hold([l1,...,1,]) iff all the I’s from the list are true in D.

Defeasible Inference:

holds_by_default(L) <« holds(L). (4)

holds_by_default(L) « rule(R, L, Body), (5)
hold_by de fault(Body).

holds_by_default(L) <« default(D, L, Body), (6)
hold_by de fault(Body),
not de feated(D),
not holds_by_de fault(—L).

hold_by _de fault(]]). (7)

hold_by default([H|T]) « holds_by_default(H), (8)
hold_by de fault(T).

The first axiom in this group ensures that strictly true statements are also true by default.
The next one allows application of rules for defeasible inference. The third axiom states that
defaults with proven premises imply their conclusions unless they are defeated by other rules
and defaults of the domain description. The condition not holds_by_default(—L) is used
when the domain contains two undefeated defaults dy and dy with conflicting conclusions.
In this case P(D) will have multiple answer sets, one containing the conclusion of d; and the
other containing the conclusion of dy. The alternative solution here is to stop applications
of both defaults, but we believe that in some circumstances (like those described by the
extended “Nizon Diamond”) our solution is preferable.

The last two rules from this group define relation hold_by_de fault(List) which holds if all
literals from the list hold by default.

Defeating defaults:

defeated(D) «— default(D, L, Body), (9)
holds(—1L).
defeated(D) «— default(D, L, Body), (10)

de fault(Dy, L1, Bodyy),

holds(con flict(Dy, D)),
holds_by de fault(pre fer(D1, D)),
hold_by _de fault(Body),

not de feated(Dy).

These axioms describe two possible ways to defeat a default d. The first axiom describes
a stronger type of defeat when the conclusion of the default is proven to be false by non-
defeasible means. The axiom (10) allows defeating of d by conflicting undefeated defaults of
higher priority. They represents the “bravery” approach in the application of defaults. In
the next section, we show how our axioms can be expanded or changed to allow other ways
of defeating defaults.

Now we are left with the task of defining conflicts between defaults. There are several
interesting ways to define this notion. Different definitions will lead to different default
theories. This is, however, beyond the limits of this paper and therefore will not be discussed
further here. The following three axioms constitute the minimal requirement for this relation.

holds(con flict(dy,ds)) (11)

for any two defaults with contrary literals in their heads and for any two defaults whose
heads are of the form prefer(d;,d;) and prefer(d;,d;) respectively.

=holds(con flict(D, D)) (12)

holds(con flict(Dq, D3)) « holds(conflict(Dz, Dy)) (13)

Finally, we include axioms stating asymmetry of the preference relation:

=holds(prefer(Dy, D2)) « holds(prefer(Dy, Dy)) (14)
D1 7£ D2

—holds_by_de fault(prefer(Dy, Dy)) «— holds_by_default(prefer(Ds, D1)) (15)
Dy # Dy

Without the loss of generality we can view these axioms as schemas where Dy and D, stand
for defaults present in D. Notice, that our minimal requirements on the preference relation
does not include transitivity. On the discussion of nontransitive preference relations see [15],

[21].
Uniqueness of names for defaults and rules:

These three axioms guarantee uniqness of names for defaults and rules used in the domain
description.

—mule(R?FhBl) — default(R,Fg,Bz) (16)

—rule(R, Iy, By) « rule(R, Iy, By), (17)
rule(R, Fy, By) # rule(R, Fy, By)

adefault(D, Fy, By) < default(D, Fy, By), (18)
default(D, F1, B1) # default(D, Fy, B)

Addition of these axioms is needed only to make domain descriptions containing defaults of
the form de fault(d,l;,1'1) and default(d,l5,';), etc, inconsistent.

Auxiliary
Finally we have the axioms
—holds(L) « holds(—L). (19)
=holds_by_de fault(L) «— holds_by_default(—L). (20)

which meaning is self-explanatory.

We believe that P(D) captures a substantial part of our intuition about reasoning with
prioritized defaults and therefore deserves some study.

10

3 Using the Axioms

In this section we illustrate the use of our approach by formalizing several examples of
reasoning with priorities. In what follows we will refer to running our programs using SLG
inference engine. Since the syntax of SLG does not allow “=7
symbol and consider only those stable models of P(D) which do not contain literals of the
form a and neg(a).

we treat it as a new function

Example 3.1 (Fxample 2.1 revisited) It is easy to check that the program P(Dy) (where
Dy is the domain description from Example 2.1) has two answer sets, containing

{=hd(can_progr(mary)), ~hd(can_progr(mike)), ~hd(can_progr(sam))}

and
{hd(can_progr(mary)), ~hd(can_progr(mike)), ~hd(can_progr(sam))},

respectively, where hd is a shorthand for holds_by_de fault. Hence, we can conclude that
Mike and Sam do not know how to program but we have to stay undecided on the same
question about Mary.

If we expand the domain by adding the statement pre fer(ds, dy) to it then the first answer set
will disappear which of course corresponds exactly to our intention. It may be instructive to
expand our domain by the following information: “Bad students never know how to program.
Bob is a bad computer science student”. This can be represented by facts

student(bob).
bad(bob).

isin(bob, cs).

and the rule
rule(rq(.S), mcan_progr(S), [student(S),bad(S)]).

The new domain description Dy will correctly entail that Bob does not know how to program.
Notice, that if the above rule were changed to the default

de fault(ds(S), —can_progr(S), [student(S),bad(S)])

we would again get two answer sets with contradictory conclusions about Bob, and that
again the conflict could be resolved by adding, say,

prefer(ds(S),dxz(9)).
O

The previous example had an introductory character and could have been nicely formalized
without using the preference relation. The next example (from [4], which attributes it to
[20]) is more sophisticated: Not only does it require the ability to apply preferences to resolve
conflicts between defaults, but also the ability of using defaults to reason about such prefer-
ences. Brewka in [4] argues that the ability to reason about preferences between defaults in
the same language in which defaults are stated is important for various applications. In legal

11

reasoning similar arguments were made by Gordon, Prakken, and Sartor [20, 28]. On the
other hand, many formalisms developed for reasoning with prioritized defaults treat prefer-
ences as something statically given and specified separately from the corresponding default
theory.

Example 3.2 (Legal Reasoning [4]) Assume that a person wants to find out if her security
interest in a certain ship is perfected. She currently has possession of the ship. According
to the Uniform Commercial Code a security interest in goods may be perfected by taking
possession of the collateral. However, there is a federal law called Ship Mortgage Act (SMA)
according to which a security interest in a ship may only be perfected by filing a financing
statement. Such a statement has not been filed. Now, the question is whether the UCC or
the SMA takes precedence in this case. There are two known legal principles for resolving
conflicts of this kind. The principle of Lex Posterior gives preference to newer law. In our
case the UCC is newer than the SMA. On the other hand, the principle of Lex Superior
gives precedence to laws supported by the higher authority. In our case the SMA has higher
authority since it is federal law.

Let us build the domain description D5 which represents the above information. We will
follow the formalization from [4] which uses symbols possession for “ship is a possession
of the lady from the above story”, per fected for “the ownership of the ship is perfected”,
and filed for “financial statement about possession of the ship is filed”. The domain also
contains symbols state(D), federal(D), and more_recent(Dy, Dy) representing properties
and relations between legal laws.

The UCC and SMA defaults of Ds can be represented by

de fault(dy, per fected, [possession]).
de fault(dy, —per fected, [filed]).

The two legal principles for resolving conflicts are represented by the next two defaults:

de fault(ds(Dy, Dy),prefer(Dy, Dy), [more_recent(Dy, D3)]).
de fault(dy(Dy, D2), prefer(Dy, D2),[federal(Dy), state(Ds)]).

The next defaults will express the closed world assumptions for relations more_recent, federal
and state. Presumably, a reasoning legal agent must have compete knowledge about the laws.
The following defaults are added to Ds to represent this CWA assumption.

de fault(ds(Dy, Dz), ~more_recent(Dy, Ds),[]).
de fault(de(D), ~federal(D),]]).
default(d:(D),~state(D),][]

To complete our formalization we need the following facts:

= filed.

Possession.
more_recent(dy,ds).
federal(dy).
state(dy).

12

It is not difficult to check (using SLG if necessary) that the program P(Ds) has two answer
sets where

(i) holds_by_de fault(per fected)
belongs to one answer set and
(i1) —holds_by_de fault(per fected)

belongs to the other. This is because we have two defaults d; and dy: the former supports
the first conclusion, the latter - the second one, and preference between them cannot be
resolved using defaults ds and dy. Thus, neither (i) nor (ii) is entailed by P(Ds). This is

also Brewka’s result in [4].

However, if we know that d4 has a preference over d3 the situation changes; To see that, let
us expand our domain description by

prefer(d4(D1,D2), dg(D27 Dl))

and denote the new domain description by De; as a result, program P(Dg) has then only
one answer set, which contains (ii). This is again the desired behavior, according to [4].
It may be worth noticing that the closed world assumptions ds,d¢ and d; have no role
in the above arguments and could be removed from the domain description. They are
important, however, for its general correctness. The example can be substantially expanded
by introducing more realistic representation of the story and by using more complex strategies
of assigning preferences to conflicting defaults. We found that the corresponding domain
descriptions remain natural and correct. a

Example 3.3 (Simple Inheritance Hierarchy) Now let us consider a simple inheritance
hierarchy of the form depicted in fig (1).

AP
3
1 T2

Figure 1. The Inheritance Hierarchy of D;

A simple hierarchy consists of two parts: an acyclic graph representing the proper subclass
relation between classes of objects and a collection of positive and negative defaults from
these subclasses to properties of objects. In fig (1) we have three class nodes, a, b, and ¢. The
strict link between the class nodes, say, ¢ and b can be read as “a is a proper subclass of 6.

13

Dotted lines from b and ¢ to property p represent positive and negative defaults respectively.
The simple hierarchy is used in conjunction with a collection of statements ts_in(x, ¢) read as
“r is an elements of a class ¢”. For simplicity we assume completeness of information about
relations subclass and is_in. (For discussion of hierarchies with incomplete information, see

7))
The encoding of simple hierarchies will consists of two parts: the first representing a par-

ticular graph and the second containing general properties of a hierarchy together with the
inheritance principle. Notice, that the second part is common to all simple hierarchies.

In our case, the domain description D7 encoding the hierarchy from fig (1) consists of domain
dependent axioms

subclass(a,b).
(¢,b).

Z:S_Z:ngl'l, a))

de fault(dy(X), has(X. p). [is.in(X, b))

de fault(dy(X), —has(X, p), [1sin(X,¢)])

subclass

where has stands for “elemen as a proper an e domain independen
h has(X, P) stands for “el t X h property P” d the d in independent
axioms

rule(ri(Co, Cy), subclass(Cy, Ca), [subclass(Co, Ch), subclass(Cy, Ca)]).

rule(rqo(X, Ch),isan(X, Cy), [subclass(Co, C1), 1san(X, Cp)]).

rule(rs(Dy(X), D2(X)), prefer(D1(X), Do (X)), [d(D1(X), -, [is(X, A)]),
d(DQ(X)v - [iS(Xv B)])v
subclass(A, B)]).

de fault(ds(X), —isan(X),[]).

de fault(dy, —subclass(A, B),[]).

(where d stands for default and _is used where names are not important). The first two
rules represent general properties of subclass and ts_in. The next rule is an encoding of the
inheritance principle. The last two defaults express the closed world assumptions for simple
hierarchies.

It is easy to check that D; is consistent and that the logic program P(D7) has the unique
answer set containing holds_by_de fault(has(xy,p)) and holds_by_de fault(=has(xs, p)). Con-
sistency result can be easily expanded to rule-consistent domains representing simple hier-
archies.

We use the next example from Brewka [6] to illustrate differences between our theory and
several other formalisms dealing with prioritized defaults.

Example 3.4 (Gray Area) Brewka considers the following defaults:

1. “Penguins normally do not fly;”,
2. “Birds normally fly;”, and

14

3. “Birds that can swim are normally penguins;”,

under the assumption that default (1) is preferred over (2), and (2) is preferred over (3).
(Notice, that Brewka assumes transitivity of the preference relation).

These defaults are represented in his formalism by a program

bird.

swims.

(dv) —flies < not flies, penguin.
(dy) flies « not = flies, bird.

(ds) penguin < not =penguin, bird, swims.

According to Brewka, the prioritized default theories from [1, 4, 24] are applicable to this
case and produce single extension Fy ={swims, bird, flies, penguin} which seems contrary
to intuition. According to the semantics from [6] the corresponding program has one pri-

oritized answer set, Fy = {swims, bird, penguin,—flies} which is a more intuitive result.
The information above is naturally encoded in the domain description Dg by the following
statements

bird.

swims.

de fault(dy, - flies, [penguin]).
de fault(dy, flies, [bird]).
de fault(ds, penguin, [bird, swims]).

prefer(ds, ds).
prefer(dy,ds).
prefer(dy,ds).

The program P(Ds) has only one answer set which contains
S1 = {holds_by_de fault(bird), holds_by_de fault(swim),

holds_by _de fault(penguin), —holds_ by de fault(flies)}.
which coincides with the approach from [6]. This happens because the default ds is in conflict
with neither d; nor dy and therefore its application is not influenced by the preference relation.
If we expand the domain description Dg by a statement

con flict(dy, ds)

the situation changes. Now we will have the second answer set,

Sy = {holds_by_de fault(bird), holds_by _de fault(swim), holds_by_de fault(flies)}.

which corresponds to the following line of reasoning: We are initially confronted with “ready
to fire” defaults (dy) and (ds). Since (dy) has a higher priority and dy and ds are conflicting
defaults, dy wins and we conclude flies. Now, (d;) is not applicable and hence we stop.

To obtain Sy, we can apply defaults (dy) and (ds). Since (d3) is then defeated by (dy) it will
not block (ds).

15

We realize of course that this example belongs to the gray area and can be viewed differently.
The main lesson from this observation is that in the process of expressing ourself (while
programming or otherwise) we should try to avoid making unclear statements. Of course,
we hope that further work on semantics will help to clarify some statements which so far
remain unclear. We also hope that the reader is not left with the impression that we claim
success in following our own advice.

4 Extending Ly(o)

In this section we briefly outline and discuss several extensions of the language Lo(o). We
show how to extend the language and the corresponding collection of axioms to allow the
representation of more powerful defaults and default defeaters.

4.1 Beyond normal defaults

So far, our language Ly allowed only the representation of normal defaults [31]. In this
section we expand the language and the corresponding system of axioms to make it capable
of representing more general types of defaults. To this end we replace the definition of default
description in Ly (see 2 in the Definition 2.1) by the more powerful construct

de fault(d,lo, [l1, ..., o], Lty - -5 1)) (2"
The intuitive meaning of this statement is that normally, if [1, ..., [, are true in D and there
is no reason to believe that [,,4q,...,[, are true in D then [y is true in D. In other words,

the statement (2’) corresponds to the logic programming rule
lo—1li,....h,not L41,...,n0t ,,not =l.

Literals ly,...,l, and l,,41,...,1, are called positive and negative preconditions of d respec-
tively. Both sets of preconditions will be sometimes referred to as the body of statement
(27).

Our set of axioms P will be modified as follows: axioms (6) and (10) will be replaced by
axioms

holds_by_default(L) «— holds(default(D, L, Positive, Negative)), (6")
hold_by_de fault(Positive),
fail by _de fault(Negative),
not de feated(D),
not —holds_by_de fault(L).

defeated(D) — holds(default(D1, L, Positive, Negative)), (10)
holds_by de fault(pre fer(D1, D)),
hold_by_de fault(Positive),
fail by _de fault(Negative),
not de feated(Dy).

16

where fail_by_de fault is defined as follows:

farl by default(]]). (21)

farl by default([H|T]) « not holds_by_de fault(H), (22)
farl by default(T).

We hope that the modification is self-explanatory.

The following example, taken from [28], illustrates the use of the new language.
Example 4.1 [29] Consider the following two legal default rules from [29]:

1. Normally, a person who cannot be shown to be a minor has the capacity to perform
legal acts.

2. In order to exercise the right to vote the person has to demonstrate that he is not a
minor.
The first default can be represented as
de fault(di(x), has_legal_capacity(x),[], [menor(x)])
which requires a negative precondition. The second default has the form
de fault(dy(x), has_right to_vote(x),[—-minor(z)],[]).
These defaults, used in conjunction with statement
—minor(jim),

entail that Jim has legal capacity and can vote. If the system is asked the same questions
about Mary whose legal age is not known it will conclude that Mary has legal capacity but
will remain in the dark about Mary’s right to vote. If we expand our domain description by
the closed world assumption for has_right to_vote

de fault(ds(x), has_right to_vote(x),[],[])

then the answer to the last question will be no.

4.2 Weak Exceptions to Defaults

So far our language allowed only strong exceptions to defaults, i.e., a default d could be
defeated by rules and by defaults conflicting with d. Many authors argued for a need for so
called weak exceptions - statements of the form “do not apply default d to objects satistying
property p”. (For the discussion of the difference between weak and strong exceptions see,
for instance, [2].) Weak exceptions of this type can be easily incorporated in our language.
First we expand the language by allowing literals of the form

exception(d, [l1, ..., L), ng1s -« s lntm)) (23)

17

read as “default d is not applicable to an object x which satisfies [y,...,/, and
not l,4q,...,not l,1,,”. The formal meaning of this statement is defined by an axiom

defeated(D) «— exception(D, Positive, Negative), (24)
hold_by de fault(Positive),
fail by default(Negative).

added to P.

Consider a domain description Dy.

de fault(d(X), p(X),[¢(X)],[])-
exception(d(X), [r(X)],[])-
q(z1).

q(w2).

r(xs).

It is easy to check, that the corresponding program P(Dg) (and hence Dy) entails p(x1) but
remains undecided about p(x2). Notice, that we were able to entail p(xy) even though z,
may satisfy property r,i.e. Dy = —r(x1). In some cases we need to be able to say something
like “do not apply d to z it x may satisfy property r”. This can be achieved by replacing
the exception clause in Dgy by

exception(d(X),[], [-r(X)]).

The new domain description entails neither p(x1) nor p(xs).

4.3 Changing the mode of reasoning

In our theory P we formalized a “ brave” mode of applying defaults. In this section we
briefly mention how the axioms can be changed to allow for cautious reasoning. This, of
course, can be achieved by adding to P the axiom

defeated(D) «— default(D, L, Body), (25)
de fault(Dy, L1, Bodyy),
holds(con flict(Dy, D)),
not holds_by_de fault(prefer(D1, D)),
not holds_by_de fault(prefer(D, D1)),
hold_by de fault(Body),
hold_by _de fault(Body)

Let us denote the resulting program by P.. Now let us consider the domain description Dig
consisting of defaults and conditionals mentioned in the introduction

18

default(dy,a,[]).
de fault(ds, b, []).
¢

default(ds,c,[]).

con flict(dy, ds).

rule(ry, —a, [b]). rule(ry, —b, [a]).
rule(rq, d, [0]). rule(rh, =b, [~d]).
rule(rs, d, [a]). rule(ry, —a, [—d]).

It is easy to check that P(Djo) has two answer sets containing {c, a,d, b} and {¢, b,d,—a}
and therefore entails d and ¢. In contrast P.(Dio) has one answer set not containing d.

It is worth to mention that it may be possible in this framework to introduce two types of
defaults - those requiring brave and cautious reasoning and add the above axiom for the
latter.

5 Hierarchical Domain Descriptions

Definition 5.1 We will say that a domain description D is consistent if P(D) is consistent,
i.e., has a consistent answer set.
Obviously, not all domain descriptions are consistent. D = {p, =p, ¢}, for instance, is not.

(Notice that is the intended meaning. We believe that the question of drawing conclusions
in the presence of inconsistency is somewhat orthogonal to the problem we address in this
paper and should be studied separately.)

In the next example inconsistency is slightly less obvious.

Example 5.1 The domain description D;; consists of the three literals:

default(d, a,]]).
rule(ry, —c, [al).

It is easy to see that P(Di1) does not have a consistent answer set. Notice, that addition of
the rule

rule(rq, —a, [c]).
will restore consistency. a
In this section we give a simple condition guaranteeing consistency of domain descriptions of
Ly. The condition can be expanded to domain descriptions of £ but we will not do it here.
We will need the following definitions.

Definition 5.2 The domain description D is said to be rule-consistent if the non-defeasible

part of P(D) has a consistent answer set. (By the non-defeasible part of P(D) we mean the
program Ps(D) consisting of the set {holds(l) | | € fact(D)} U laws(D) and nondefeasible
rules (rules 1-3, 9, 12-14, and 16-19 or P(D)).

19

Definition 5.3 A domain description D over signature o will be called hierarchical if it
satisfies the following conditions:

1. D is rule-consistent;

2. for any dy,ds € D, conflict(dy,ds) € D iff heads of dy and dy are contrary literals of o
or have the form prefer(d;,d;) and prefer(d;,d;) where i # j;

3. heads of defaults in D are o-literals or literals of the form prefer(dy,ds);
4. no literal from the head of a default in D belongs to the body of a rule in D;

5. there is a function rank from the set heads(D) of literals belonging to the heads of
defaults in D to the set of ordinals such that

(a) rank(l) = rank(=l);

(b) rank(prefer(dyi,dsy)) = rank(prefer(dsz,dy))

(c) if default(d,,[l,...]) € D and [; € heads(D) then rank(l) > rank(l;);

(d) if prefer(dy,dsy) € heads()and dq, dy € D then rank(head(d;)) > rank(prefer(dy,ds))
fori=1,2;

It is easy to check that domain descriptions Dy, Dy, D4, and Dg are hierarchical while
Dy, D5, D7 are not. In Dy and D, the condition (4) is violated while (2) is not true in
D5. Domain description Dj is also hierarchical. The rank function for D5 can be given by
rank(l) = 1 for | & {perfected, ~perfected}, rank(perfected) = rank(—perfected) = 4,
and rank(prefer(dl(X),d2(X))) = rank(prefer(d2(X),d1(X))) = 2.

Theorem 5.1 Hierarchical domain descriptions are consistent.
To prove the theorem we need the following lemmas.

Lemma 5.1 *Let P be a logic program and

q 1
q 1,

be the collection of all rules of P with the head g. Then the program Q obtained from P by
replacing rules of the form

p = Alv q, AZ
by the set of rules

p Al,Fl,Ag
p Al,FQ,AQ

is equivalent to P, i.e., P and Q have the same consistent answer sets.

2This is a well-know property of logic programs called “partial evaluation” in [3]. We were, however,
unable to find a proof of it for an infinite P.

20

Proof. Let us denote the set of all rules removed from P by & and let
R=QUS.

R can be viewed as a union of P and the set of new rules obtain from P by the application
of the cut inference rule. Since the cut is sound w.r.t. constructive logic Ny [27] which is an
extension of the logic N from [25], P and R are equivalent in N;. As shown in [27], programs
equivalent in N, have the same consistent answer sets, i.e.,

(a) programs P and R are equivalent.
This means that to prove our lemma it suffices to show equivalence of R and Q.

Let @4 and S* be reducts of Q and S w.r.t. set A of literals (as in the definition of answer
sets). We show that A is the minimal set closed under Q4 iff it is the minimal set closed
under Q4 U §4.

(b) Let A be the minimal set closed under Q4. We show that it is closed under S*.
Consider a rule
p—At g Al €54

s.t. {Ad)q,As} C A, (Here by A4 we denote the result of removing from A; all the
occurrences of not [s.t. [¢ A. Obviously, A#’s above do not contain not .) From the
assumption of (b) and the fact that ¢ € A we have that there is ¢ s.t. a rule

q — Ff‘ c o4
with I'4 C A. This implies that there is a rule
P ALTHLAY € Q4

whose body is satisfied by A, and therefore p € A. This implies that A is the minimal set
closed under Q4 U S*.

(c) Let A be the minimal set closed under Q4 USA. We will show that it is the minimal set
closed under Q4.

A is obviously closed under Q4. Suppose that there is B C A closed under Q4. As was
shown above it would be also closed under S which contradicts our assumption.

From (b), (c¢) and the definition of answer set we have that R and Q are equivalent, which,
together with (a), proves the lemma. O

To formulate the next lemma we need the following notation: Let P be a ground logic
program not containing negative literals =/ and let p be a unary predicate symbol from the
language of P. By P* we denote the result of replacing all occurrence of atoms of the form
p(t) in P by t. Notice, that P* can be viewed as a propositional logic program with different
terms viewed as different propositional letters.

Lemma 5.2 Let P be a logic program not containing negative literals =/, and let p be a

unary predicate symbol from the language of P. Then A is an answer set of P iff A* is an
answer set of P*.

21

Proof. If P does not contain not the lemma is obvious. (We assume of course that terms
of the language of P cannot be used as atoms in this language). Otherwise, notice that by
definition of answer set, A is an answer set of P iff it is an answer set of P4. Since P4 does
not contain not this happens iff A* is the answer set of (P4)*. To complete the proof it
remains to notice that (P4)* = (P*)4". O

Lemma 5.3 Let D be a domain description. By P;(D) we denote the program obtained
from P(D) by

e replacing all occurrences of literals hold([l1, ..., 1,]) and hold_by_de fault([ls,...,1,]) in
the bodies of the rules from P(D) by holds(ly), ..., holds(l,) and
holds_by_de fault(lh),. .., holds_by_default(l,) respectively (we denote the resulting

program by Po(D));

e Dropping the rules with heads formed by literals hold and hold_by_de fault.
Then

(a) if A is an answer set of P(D) then A\ lit({hold, hold_by_de fault}) is an answer set of
Pi(D);

(b) if A is an answer set of Py(D) then
A U {hold([lh,...,1,]) : holds(ly),..., holds(l,) € A} U
{hold_by default([l,...,1,]) : holds_by_default(ly),..., holds_by_default(l,) € A}

is an answer set of P(D).

Proof. First notice that by Lemma 5.1, programs P(D) and Po(D) are equivalent. Then
observe that atoms formed by predicate symbols hold and hold_by_de fault form the com-
plement of a splitting set of program Py. The conclusion of the lemma follows immediately
from the splitting set theorem ([23]) and the fact that rules defining hold and hold_by _de fault

contains neither not nor —. O

Lemma 5.4 Let D be a hierarchical domain description over signature o and

H = {holds(l) : Ps(D) | holds(l)} U{defeated(d) : Ps(D) |= defeated(d)}.

By P2(D) we denote the program consisting of the following rules

holds_by de fault(l). if holds(l) € H (1)

holds_by_default(l) « holds_by_default(l), (2)

holds_by de fault(l,),

22

not de feated(d),
not holds_by_de fault(=l).

if de fault(d,l,[ly,...,1,]) € D
and holds(l) & H,
and holds(—l) ¢ H

defeated(dy) « holds_by_default(ly), (3)

holds_by de fault(l,),
holds_by_de fault(prefer(dy,ds))
not de feated(dy).

if dy € D,

default(dy, 1, [h,..., 1)) € D,
holds(con flict(dy,dy)) € H
and holds(l) & H

and holds(—l) ¢ H

holds_by_de fault(—prefer(dy,dy)) «— holds_by_de fault(prefer(dy,dy)) (4)

if holds(prefer(dy,dy)) & H
and holds(prefer(dy,dy)) & H
and dy,dy € D

—holds_by_de fault(l) «— holds_by_de fault(=l). (5)

Then, A is an answer set of Py(D) iff A = laws(D)U H U B where B is an answer set of
Pa(D).

Proof. Let Uy be the set of literals formed by predicate symbols holds, rule and de fault.
Uy is a splitting set of program P;(D) and hence A is an answer set of P1(D) iff A = AgU Ay
where Ag is the answer set of program by, (P (D)) consisting of rules of P;(D) whose heads
belong to Uy and Ay is an answer set of the partial evaluation, R = ey, (ty, (P(D)), Ao), of

the rest of the program w.r.t. Uy and Ag. It is easy to see that the program R consists of
the rules of Py(D) and

(a) rules of the type (2) where holds(l) or holds(=l) is in H;
(b) rules of the type (3) where holds(l) € H or holds(=l) € H;

23

(c) rules of the type

holds_by_default(l) « holds_by_default(l),

holds_by de fault(l,),

for each rule rule(r,l,[l1,...,1,]) € D;
(d) rules of the type (4) where holds(prefer(dy,dy)) € H or holds(prefer(ds,dy)) € H;
(e) facts of the type de feated(d) where d is a default in D with the head [s.t. holds(—l) € H.

From the rule (9) of program P we have that facts of the type (e) belong to H and hence
to prove the lemma it is enough to show that the rules of the type (a)-(d) can be eliminated
from R without changing its answer sets. To do that let us first make the following simple
observation. Consider a program Qi containing a rule p « I' and the fact p and let Q5 be
obtained from Qi by removing the rule. Q; and Q; are obviously equivalent in the logic
Ny and hence have the same answer sets. Similarly, we can show that a rule whose body
contradicts a fact of the program can be removed from the program.

(la) Consider a rule r of R of the type (a).

If holds(l) € H then, from rule (4) of P we have that holds_by_default(l) € R. Hence, by
the above observation, r can be removed from R without changing its answer sets.

If holds(=l) € H then from rule (4) of P we have that holds_by_de fault(—l) € R which

contradicts the body of r. Hence r is useless and can be safely removed.

(1b) Now consider a rule r of the type (b). We will show that its head, defeated(ds), is a
fact of R.

First notice that, if holds(=l) € H then Py(D) |= defeated(d;). Therefore, defeated(dy) €
Ap and hence, in this case, r € R.

Suppose now that holds(l) € H. Consider two cases:

(i) The head [of dy is o literal.

By definition of rules of type (b) we have that holds(conflict(dy,dy)) € H. From condition
(2) of definition 5.3 of hierarchical domain description we conclude that the head of default
dy is literal =[. Since r is of type (b), this means that holds(=l) € H and, from the rule (9)
of P we have that defeated(dy) € H.

(ii) The head [of dj is of the form prefer(d;,d;).

From conditions (2), (3) of definition 5.3 we have that the head of d; is prefer(d;,d;). From
rule (14) of P we have that —prefer(d;,d;) € H. Finally, from rule (9) of P we have that
defeated(dsy) € H.

This demonstrates that the rules of the type (b) can be removed from R without changing
its answer sets.

(1c) It is easy to check that by the condition (4) of definition 5.3 the body of a rule of the
type (d) is satisfied iff holds(ly), ..., holds(l,) € H and hence the head of such a rule is in

H or the rule is useless.

24

(1d) Similar argument can be used for the rules of the type (c¢). The conclusion of the lemma
follows now from the observation above and the splitting set theorem. O

Let us consider a logic program Q(D) obtained from program Py(D) by

(a) removing rules of the type (5);

(b) replacing literals of the form holds_by_de fault(l) and de feated(d) by [and d respectively.
The program Q(D) has a form

{. if holds(l) € H (1)
l — 117...,ln, (2)
not d,
not —l.

if de fault(d,l,[ly,...,1,]) € D
and holds(l) & H,
and holds(—l) ¢

d2 — ll,...,ln, (3)
prefer(dy,ds)
Q(D) = not dj.

if dy € D,

default(dy, 1, [h,..., 1)) € D,
holds(con flict(dy,dy)) € H
and holds(l) & H

and holds(—l) ¢ H

sprefer(di,dy) «— prefer(ds,d). (4)
if holds(prefer(dy,dy)) & H

and holds(prefer(dy,dy)) & H
and dy,dy € D

Lemma 5.5 Let D be a hierarchical domain description over signature o and let H be the
set of literals defined as in Lemma 5.4. Then the program Q(D) is consistent.

Proof. First let us notice that the set F' of facts of the form (1) from the program Q(D) form
a splitting set of this program. Since D is rule consistent so is F'. This implies that Q(D) is
consistent iff the result Qg of partial evaluation of Q(D) with respect to F'is consistent. Let
Q4 be the result of removal from Qg all the rules whose bodies contain literals not belonging
to the heads of rules from Qq. Obviously, Q(D) is equivalent to Qj.

To prove consistency of @, we construct its splitting sequence and use the splitting sequence
theorem from [23].

25

Since D is hierarchical it has a rank function rank. Let g be the smallest ordinal number
such that rank(l) < p for every [from the domain of rank. Let heads(Q;) be the set of
literals from the heads of rules in @, and

Uy, = {l:1€lit(o) N heads(Q1) s.t. rank(l) < a}U
{d € heads(Q1) : rank(head(d)) < a}U
{prefer(di,ds) € heads(Q1) : rank(prefer(di,ds)) < a}uU
{—prefer(di,ds) : prefer(dy,dy) € heads(Qy),rank(prefer(dsy,dy)) < a}

The sequence U = (U,)a<, is monotone (U, C Uz whenever a <) and continuous (for
each limit ordinal a < p, U, = Ug<, Us). Using the property of the rank function from the
definition of hierarchical domain description it is not difficult to check that for each a < p,
U, is a splitting set of Q; and that J,., U, is equal to the set of all literals occurring in Q;.
Hence, U is a splitting sequence of Q. By the splitting sequence theorem existence of an
answer set of Q1 follows from existence of a solution to Q; (with respect to U). Let T, be
a collection of all the rules from Q; whose heads belong to U,. To show existence of such a
solution it suffices to

(i) assume that for « such that o+ 1 < p the program T, has a consistent answer set Ag;
(ii) use this assumption to show that T4 also has a consistent answer set;

(iii) show that U,., A, is consistent.

Let us show (ii) and (iii). Let T be the result of partial evaluation of the program T, with
respect to the set A,. T can be divided into three parts consisting of rules of the form

(a) dy «— not dy.

and

(b) I « not d,not -l where [is a o-literal

and

(cl) prefer(d;,d;) « not d,not =prefer(d;,d;)

(c2) —prefer(d,,,d,) « prefer(d,,dn).

respectively.

To show consistency of the program T'(a) consisting of rules (a) we first observe that, by
construction, if a rule r of type (a) is in T then dy,dy are conflicting defaults and hence,
by condition 2 of definition 5.3 their heads are either contrary o-literals or of the form
prefer(d;,d;) and prefer(d;,d;) where ¢ # j. Consider the dependency graph D of S;. D
obviously does not contain cycles with positive edges. We will show that it does not contain
odd cycles with negative edges. (Programs with this property are called call-consistent).
Suppose that dy, ..., dsn41,dq is such a cycle. Since d; and d;41 (2 = 1,...,2n) are conflicting
defaults we have that dy and dy,41 have the same heads (clause (2) of the definition). Since
dy and dy, 41 are conflicting their heads must be different. Hence our program has no odd
cycles. As was shown by Fages [14] (see also [12]), call consistent programs with dependency
graphs without positive cycles have an answer set.

26

To show consistency of the program T'(a,b) consisting of rules (a) and (b) of T it suffices
to take an arbitrary answer set of program T'(a) and use the splitting set theorem. The
corresponding reduct R will consist of rules of the form [< not —l. Let Xy be the set of
all positive literals from the heads of R and X, be the set of negative literals of the form -/
from the heads of R such that [€ X,. It is easy to see that the set Xy U X; is a consistent
answer set of R.

Now we need to show consistency of the partial evaluation 7T, of T" with respect to some
answer set of T'(a,b). T, consists of rules

prefer(d;,d;) < not —prefer(d;, d;)
and
—prefer(dy,d,) « prefer(d,,d,,).

Let heads(T,) be the set of the heads of the rules of T, and let us assume that each default
is associated with a unique index 7. Consider a set X

Xo = {prefer(d;,d;) : prefer(d;,d;) € heads(T,),prefer(d;,d;) ¢ heads(T,)}U
{prefer(d;,d;) : i < jif prefer(d;,d;) € heads(T,) and prefer(d;,d;) € heads(T,)}

Now let
X = XoU {—-prefer(d,,dn) : prefer(d,,d,) € Xo}

Obviously, X is consistent. To show that it is a consistent answer set of T} let us construct
TX and show that

prefer(d;,d;) € TX iff prefer(d;,d;) € X.
Let

prefer(d;,d;) € X.

Then, by construction of X,
prefer(d;,d;) ¢ X, hence

—prefer(d;,d;) ¢ X, i.e.

prefer(d;,d;) € TX.

Similar argument demonstrates equivalence in the opposite direction. This implies that X
is a consistent answer set of T,.. By the splitting set theorem we conclude consistency of T
and T,11. Statement (iii) follows immediately from the above construction of answer set of
To+1 and hence, from the splitting sequence theorem we have that Q(D) is consistent. O

By the splitting sequence theorem we conclude that Qp is consistent which immediately
implies consistency of P;(D). To prove consistency of PZ(D) it is enough to notice that
since answer set of Qy is consistent, the corresponding answer set of P, (D) never contains

two literals of the form holds_by_default(l) and holds_by_de fault(=l). O

27

Lemma 5.6 Let D be a hierarchical domain description over signature o and let Q(D) be
the program defined as in Lemma 5.5. Then for any literal [of Lo(o)

D E holds_by_de fault(l) iff Q(D) = 1.

Proof. By definition,

1. D |= holds_ by de fault(l) iff P(D) |= holds_by_de fault(l).
From (1) and lemma 5.3 we have that

2. D E holds_by_default(l) ifft P1(D) |= holds_by_de fault(l).
From (2) and lemma 5.4 we have that

3. D E holds_by_default(l) iff Po(D) |= holds_by_de fault(l).

Now let us consider the program Q,(D) obtained from Q(D) by replacing every negative
literal [= —p(t) by the atom [= p(¢) where p is a new predicate symbol.

From (3) and lemma 5.2 we have that
4. Po(D) |= holds_by_de fault(l) iff Q,(D) [.

As was shown in [18] answer sets of Q(D) coincide with answer sets (stable models) of Q,(D)
which do not contain pairs of atoms of the form /, [. Let us show that no answer set A of
Q,(D) contains such literals. Consider two cases:

(i) [is a o-literal. Suppose that [€ A. Obviously there is no rule of the type (2) in Q,(D)
whose head is [and whose body is satisfied by A. Since D is rule-consistent [€ Q,(D) and
hence [€ A.

(ii) | = prefer(d;,d;). There are free types of rules in Q,(D) which contain literals formed
by prefer in the heads:

(a). prefer(d;,d;).

from rule (1) of Q(D)

(b). prefer(d;,d;) « T',not prefer(d;,d;).
from rule (2) of Q(D) and

(c). prefer(d;,d;) « prefer(d;,d;).

from rule (2) of Q(D).

Suppose that prefer(d;,d;) € A. Then, from the rule consistency of D we have that
prefer(d;,d;) does not belong to (a). Since, by rule (c¢) we have that prefer(d;,d;) € A
and hence prefer(d;,d;) ¢ A. This implies that prefer(d;,d;) & A.

Hence, we have that

5. Qp(D) = 1iff Q(D) = 1,

which, together with (4) proves the lemma. O
The proof of the theorem 5.1 follows immediately from Lemmas 5.5 and 5.6.

As lemma 5.6 points out the defeasible entailment in Q(D) and D are equivalent. Therefore,
in what follows, we will refer to the program Q(D) as the defeasible counterpart of D.

28

6 Relationship With Prioritized Logic Programs

In this section we discuss the relationship between our theory of prioritized defaults and the
prioritized logic programs recently introduced by G. Brewka [6]. In Brewka’s approach, a
domain description is represented by a prioritized logic program (P, <) where P is a logic
program with the answer set semantics representing the domain without preferences and <
is a preference relation among rules of P. The semantics of (P, <) is defined by answer sets
of P satisfying some conditions determined by <.

We will recall the notion of preferred answer sets and show that for a restricted class of
hierarchical domain descriptions Brewka’s approach and our approach are equivalent. In
what follows, we will use the following terminology.

A binary relation R on a set S is called strict partial order (or order) if R is irreflexive and
transitive. An order R is total if for every pair a,b € S, either (a,b) € R or (b,a) € R and is
well-founded if every set X C S has a minimal element. R is said to be well-ordered if R is
total and well-founded.

A prioritized logic program (P, <) where P is a collection of rules of the form
T lo—1li,....h,not Lyq,...,n0t [,

where [;’s are ground literals, and < is an order on P. [y,..., [, are called the prerequisites
of r. If m = 0 then r is said to be a prerequisite free rule. r is defeated by a literal [if [= [;
for some ¢ € {m+ 1,...,n}. r is defeated by a set of literal X if X contains a literal that
defeats r. A program P is prerequisite free if every rule in P is prerequisite free.

For a program P and a set of literals X, the reduct of a program P with respect to X, denoted
by X P, is the program obtained by

e deleting all rules with prerequisite [such that [¢ X; and
o deleting all prerequisites of the remaining rules.

Definition 6.1 (Brewka [6])

e Let (P, <) be a prioritized logic program where P is a prerequisite free program and
< is a total order among rules of P, we define C.(P) =2, S; as follows.

So =1

¢ _ Sp_q if 7, is defeated by S5,_1
" | Sa—1U{head(r,)} otherwise

where r,, is the n'" rule in the order <.

e Let (P, <) be a prioritized logic program where P is a prerequisite free program and
< is a total order among rules of P. An answer set A of P is called a preferred answer

set?, of (P, <) if A= C(P).

3Strong preferred answer set in Brewka’s terminology.

29

e For an arbitrary prioritized logic program (P, <), a set of literals A is a preferred
answer set of (P, <) if it is an answer set of P and A = C./(4P) for some total order
<’ that extends <.

e A prioritized program (P, <) entails a query ¢, denoted by (P, <) |~ g, if for every
preferred answer set A of (P, <), A = q.

Notice that in our approach, up to this point, we mainly discuss domain descriptions con-
taining normal defaults. We do, however, allow dynamical priorities whereas Brewka does
not. Furthermore, Brewka requires the transitivity of the preference relationship. Therefore,
in this section, we will restrict ourself on domain descriptions where priorities are static,
i.e., there exists no default with the head of the form prefer(d;,ds;) and the binary relation-
ship defined by prefer is transitive. This leads to the following definition of static domain
descriptions.

Definition 6.2 A domain description D is said to be static if it satisfies the following con-
ditions:

e laws of D do not contain occurrences of the predicate symbol prefer;

e the transitive closure of the preference relation {(d1, ds) : dy,dy are defaults in D such
that prefer(dy,ds) € D}, denoted by prefery, is an order on defaults of D.

For a static domain description D, the prioritized logic program (D) = (B(D), <p) of D is
defined as follows.

[. if [is a o-literal in D
B(D)=1 1 — I, 0. if rule(r,l,[l,...,1,]) € D

d: | «— l,....l,,not =l ifdefault(d,l,[l,...,1,]) €D

dy <p ds if (dy,dy) € prefers

We say that a domain description D entails a o-literal [in the sense of Brewka (and write
D ks q) it (D) |~ .

To continue with our discussion, we need the following notation.

A domain description D will be called a domain description with a basic preference relation if
for every literal of the form prefer(di,ds) € D, head(d;) and head(ds) are contrary literals.

The following theorem shows that for a static and hierarchical domain description with a
basic preference relation, Brewka’s approach coincides with ours.

Theorem 6.1 For every hierarchical and static domain description D with a basic preference
relation and every o-literal [,

D E holds_by_default(l) if and only if D gl

30

Recall that, by Lemma 5.6,
D E holds_by_default(l) iff Q(D) 1

where Q(D) is the program defined in Lemma 5.5. Hence, to prove the theorem, it suffices
to show that

Q(D) E 1iff TI(D) 1.

Let us introduce some useful terminology and notation. Let D be a hierarchical domain
description and

U(D)=A{l€ Lo(o) : P(D) = holds(l)}
where Py(D) is the non-defeasible part of P(D).
Let Dy be the domain description obtained from D by

i) removing all rules and o-literals from D;
(1) ing all rul d o-literals f D;
(ii) removing all defaults d € D such that head(d) € U(D) or ~head(d) € U(D);

(iii) removing every occurrence of o-literal [€ U(D) from the bodies of the remaining

defaults of D;

(iv) for each rank r:

— removing all defaults d € D such that rank(head(d)) = r and body(d) contains a
literal not belonging to the head of any of the remaining defaults in D;
— removing all literals of the form prefer(dy, dy) containing default d; of the rank r
not belonging the remaining part of D.
The domain description Dy will be called the normalization of D.
A hierarchical domain description D is said to be normalized it D = Dy.
Let Q(D) be the defeasible counterpart of a static domain description D and let R(D) be
obtained from Q(D) by

(a) removing rules of the type (4);

(b) performing partial evaluation of the resulting program with respect to U(D).

This construction, together with the following simple lemma, will be frequently used in our
proof.

Lemma 6.1 For any static and hierarchical domain description D and o-literal [& U(D),

Q(D) E 1iff R(D) = 1.

31

Proof. First notice that since D is static —prefer(dy,dz) € U(D) or prefer(ds,di) & U(D).
Hence the program Q,(D) obtained from Q(D) by step (a) has the same answer sets as
Q(D).

Now notice that since D is static the heads of rules of the type (2) in Q(D) belong to lit(o).
By construction of Q(D) these heads do not belong to U(D). Therefore, U(D) is a splitting

set of Q,(D) and conclusion of the lemma follows from the splitting set theorem. O
The proof of the theorem 6.1 will be based on the following lemmas.

Lemma 6.2 Let Dy be the normalization of a static and hierarchical domain description

D. Then, for every o-literal [such that [¢ U(D)
D [holds_by default(l) iff Dy | holds_by_default(l).

Proof. Let [be a o-literal such that [¢ U(D). Since D is hierarchical we have that by
Lemma 5.6 it suffices to show that
a. Q(D) = 1iff Q(Dy) E L.

Domain descriptions D and Dy are static and hierarchical and hence, by Lemma 6.1 we have
that (a) is true iff

b. R(D) k= iff R(Dy) = 1.

Let D* be the domain description obtained from D by performing the steps (i), (ii), and (iii)
in the construction of Dy. Obviously, Dy C D*. We first prove that

c. R(D) and R(D*) are identical.
Let
cl. r € R(D)

We consider two cases:
(i) head(r) € lit(o) , i.e.,
r is of the form Iy «+ I', not d,not —l,

where I' consists of o-literals not belonging to U(D). By construction of R(D) and
Q(D) this is possible iff

c2. neither ly nor =ly is in U(D) and there is a set of literals A C U(D)
such that default(d,ly, [A,T]) € D.

From definition of Dy we have that (c2) holds iff
c3. default(d,ly, [I']) € D*.

Notice also that, by the same definition, U(D*) consists of literals formed by prefer
and con flict and hence do not contain o-literals. This implies that (c3) holds iff

32

c4. r e Q(D).

Since D is static, literals from U(D*) do not belong to rules (2) of Q(D*). This implies
that (c4) holds iff

c5. r € R(D).
(i) head(r) & lit(c), i.e.
r is of the form dy — T',not d;
where T' consists of o-literals not belonging to U(D).
By construction of R(D) this is possible iff
c6. default(dy,lo, [A,T)), de fault(dy, —lo, [A1,T1]) € D

for some A C U(D), Ay C U(D) and I'y consisting of o-literals not belonging to U(D);
lo,—lo & U(D), and prefer(dy,dsy) € D.

It follows from definition of D* that (c6) holds iff
c7. default(dy,lo, [I']) € D*, default(dy, 1o, [I'1]) € D* and prefer(dy,ds) € D*.
which holds iff
8. r € R(D).
From (cl), (¢5) and (c8) we have that R(D) and R(D*) are identical. Therefore, to prove
(b) we will show
d. R(D*) = liff R(Dn) = 1.
Let
e. A be an answer set of R(D*).
Let
f. B=A\{d:de D"\ Dy}
We will prove that
dl. B is an answer set of R(Dy).
By construction of R(D*) and R(Dy) it is easy to see that
&2, (R(Dx))P € (R(D))".
Hence,
d3. B is closed under the rules of (R(Dx))?.

Assume that there exists a set of literals C' C B, which is closed under the rules of (R(Dx))®.
Let

33

d4. D = (CNlit(o))U (A\ lit(0)).

We will prove that

d5. D is closed under the rules of (R(D*))".

By construction of D,

d6. D is closed under the rules of (R(D*))* whose heads do not belong to lit(o).
Consider a rule

el. [p T ¢ (R(D*))A such that

el. I' C B.

By construction of (R(D*))#, this is possible if there exists a default d,
e2. default(d, lo, [I']) € D*,

e3. 7lo € B,d ¢ A,

From (e2) and the fact that C is closed under the rules of (R(Dx))?, by construction of Dy,
we conclude that

ed. default(d,ly,[I']) € Dn.
which, together with (e3), implies that

Since (' is closed under the rules of (R(Dx))?, (e5) together with (el), implies that I, € C.
This proves that D is closed under the rules of (R(D*))* with o-literals in their heads. This,
together with (d6), implies (d5), and hence, implies that, A is not an answer set of R(D*).
This contradiction proves (d1).

Now, let
fl. A be an answer set of R(Dx),
and

2. B=AU{d:d e D"\ Dy,
dd' € Dy, prefer(d,d) € D*, body(d') C A}.

We will prove that B is an answer set of R(D*) by showing that B is a minimal set of literals
closed under the rules of (R(D*))".

Since A is an answer set of R(Dy) we can conclude that
3. for any d € D* \ Dy, body(d) is not satisfied by A.

This, together with the construction of B and the fact that every rule of (R(D*))? is of the
form [« I" or d «+ I" where I' is the body of some default in D*, implies that

f4. B is closed under the rules of (R(D*))B.

We need to prove the minimality of B. Assume the contrary, there exists a set of literals

C C B that is closed under the rules of (R(D*))B. Let

34

f5. D=C\(B\ A).

Obviously, D C A. Since (R(Dn))* C (R(D*))?), it is easy to check that D is closed under
the rules of (R(Dy))* which contradicts the fact that A is an answer set of R(Dy), i.e., we
have proved that

f6. B is an answer set of R(D*).
From (e), (d1), (f1), and (f6) we can conclude (d). which, together with (a), (b), and (c)

proves the lemma. a

The next lemma shows that for a static and hierarchical domain description, the program

B(D) can also be simplified.

Lemma 6.3 Let D be a static and hierarchical domain description and Dy be its normal-
ization. Then, for each o-literal [such that [€ U(D),

(D) ~ 1 if and only if I(Dn) ~ L.

Proof. First, observe the following for prioritized programs.

Let (@), <) be a prioritized program where () is a defeasible program without facts, i.e., each
rule in) contains at least a negation-as-failure literal. Let P be a strict program, i.e., no
rule in P contains a negation-as-failure literal. Let head((Q)) be the set of literals belonging
to the heads of () and body(P) be the set of literals belonging to the body of rules of P.
Assume that head(Q)) N body(P) = 0. Then, we have that

(i) A is a preferred answer set of (P UQ, <) iff A= ApU Ay where Ap is the answer set
of P and Ag is a preferred answer set of (Qp, <) where Qp is the partial evaluation of
() with respect to Ap.

(ii) Let P’ be a strict program equivalent to P. Then, (P U @, <) and (P’ U @, <) are
equivalent.

(iii) Let R be the set of rules in @ such that for every r € R, P |= head(r) or P |= —head(r).
Then, (PUQ,<) and (PUQ \ R, <) are equivalent.

Let us denote the program consisting of rules (3) of B(D) by @ and P = B(D)\ Q. Obviously,
a. () is a defeasible logic program without facts and P is a strict program.

Since D is hierarchical, we have that

b. head(Q) N body(P) = 0.

Let Up(D) be the set of o-literals belonging to U(D). It is easy to see that Uy(D) is the

unique answer set of P, i.e., Uy(D) and P are equivalent. Therefore, together with (a) and
(b), by (ii) we can conclude that

¢. (D) b 1iff (Uo(D) U Q, <p) 1.

35

Let R be the set of rules in @ such that for every r € R, head(r) € Uy(D) or —head(r) €
Us(D), then by (iii) we know that

d. (Us(D)UQ, <p) I Liff (Uy(D)UQ\ R, <p) I~ L.

It is easy to see that Uy(D) is a splitting set of Up(D) U Q \ R. Let S be the reduct of
Up(D)U @\ R with respect to Uy(D).

As in the previous proof, let D* be the domain description obtained from D by performing
the steps (i), (ii), and (iii) in the construction of Dy. We will prove that S is identical to
B(D*). Let

el. r € S.
It means that r has the form
e2. [«— I, not —l.

where ' is a set of o-literals containing no literals from Uy(D). By construction of S, (e2)

holds iff

e3. | & Uy(D), =l ¢ Uy(D), and there exists a set of literals A C Uy(D) such that
default(d,l,[T',A]) € D.

From the definition of D*, (e3) holds iff

ed. default(d,l,[I']) € D*

By definition of B(D*) and the definition of D*, (e4) holds iff
eb. ris a rule in B(D*).

From (el) and (e5) we can conclude that

e. S is identical to B(D*).

From (e), (i), (¢), and (d), and the splitting set theorem, we have that
f. (D) Liff 1 € U(D) or II(D*) |~ L.

This, implies that to prove the lemma, it suffices to show that
g. (D) |~ Liff (Dy) ~ L.

To prove (g) we first prove that

gl. B(D*) and B(Dy) are equivalent.

Let

g2. A be an answer set of B(D~).

Since Dy C D*, we have that

g3. (B(D))" € (B(D"))*

which immediately implies that

g4. A is closed under the rules of (B(Dy))*.

36

Furthermore, it is easy to prove that if B C A is closed under the rules of (B(Dy))? then B
is closed under the rules of (B(D*))#. This, together with (g4), implies that

gh. A is an answer set of B(Dy).
Now, let

g6. A be an answer set of B(Dy).
Since for any rule

g7, 1T € (B(D"))"\ (B(Dx))
there exists a default d such that
g8. default(d,l,[I']) € D* \ Dy.
Hence, we can conclude that

g9. if r is a logic programming rule in (B(D*))* \ (B(Dx))* then body(r) is not satisfied by
A.

This, together with (g6) and the fact that (B(Dx))* C (B(D*))*, implies that

gl0. A is an answer set of B(D*).

From (g2), (g5), (g6), and (g10) we can conclude (gl).

The conclusion (g) follows from (gl) and the fact that 4(B(D*) is identical to 4(B(Dy). O
The above two lemmas show that for any static and hierarchical domain description D and
o-literal [€ U(D)

(i) Q(D) E1iff R(Dn) I and

(ii) II(D) |~ 1 iff H(Dy) p~ L.

where Dy i1s the normalization of D.

Furthermore, for [€ U(D), Q(D) = [and II(D) p~ 1.

Therefore, to prove the theorem 6.1, we will show that for [¢ U(D),
R(Dn) = 1iff I(Dy) 1.

The above observation shows that in proving theorem 6.1 we can limit ourself to static
and normalized domain descriptions with a basic reference relation. Since for a static and
normalized domain description D, the programs R(D) and II(D) are simpler than for general
cases, for future references, we define these programs before continuing with the proof of
theorem 6.1.

37

For a static and normalized domain description D, the program R(D) consists of the following
rules

I — L,...,l,,not d,not —l. (1)
if de fault(d,l,[l1,...,1,]) € D
d2 — ll,...,ln,TLOt dl. (2)

if dy € D,default(dy,l,[h,...,1.]) € D, prefer(dy,dy) € D,
and head(dsy) = -l

and the program B(D) of II(D) consists of the following rules:

I — L,...,1,,not —l. (1)
B(D)

if de fault(d,l,[ly,...,1,]) € D
To continue with the proof we need the following definitions.

Definition 6.3 Let D be a static domain description with the preference relation Fy. Let Py
be a well-ordered order defined on defaults in D which extends Fy. The domain description

D=DU {prefer(di,ds) : (dy,dy) € P} is called a completion of D.
We will need the following technical observations.

Lemma 6.4 Let D be a static and normalized domain description. Let A be an answer set

of R(D) and default(d,l,[I']) be a default in D such that [¢ A and I' C A. Then, =l € A.

Proof. First notice that, since D is normalized, it is hierarchical. Therefore, in virtue of
theorem 5.1, D is consistent. By Lemmas 5.6 and 6.1 this implies that R(D) is consistent.
As was shown in [18] every answer set of consistent program is consistent which implies
consistency of A.

Since [«— I',not d,not =l is a rule in R(D), I' C A, [¢ A, and A is a consistent answer set
of R(D), we have two cases:

(i) =l € A; or
(i) d € A.

Consider the second case: d € A. Then there exists a rule (2) of R(D) with the head d
whose body is satisfied by A. From construction of R this implies that there exists a default
1. default(dy, -1, [A]) € D

such that

2. ACAand d; ¢ A.

38

From (1) and construction of R we can conclude that R contains the rule
3. =l «— A, not dy,not .

Recall, that, by condition of the lemma, [¢ A. This, together with (2), implies that the
body of the rule (3) is satisfied by A. Therefore, - € A. O

Let X be a set of literals in the language of R(D). By X|; we denote X N lit(c).

Lemma 6.5 Let D be a static and normalized domain description and D be one of its
completions. Then, for every answer set A of R(D) there exists an answer set A of R(D)

such that A|; = A

Proof. Since the preference relation in D is a well-ordered order among defaults, we can
enumerate the set of defaults in D by the sequence dy, d,,...,d,,....2

Let A be an answer set of R(YND) It is easy to see that, since D is normalized, A is consistent.

We define a sequence of sets of literals A2, in the language of R(D) as follows:

A, U{d,41)} if there exists d; s.t.
(0a) default(d;,—head(d,41),[']) € D,
(Ob) prefer(d;,d,+1) € D,
Any1 = (0c) I' C A, and
(0d) d; & A,.

A, otherwise

Let A = U2 A;. Obviously, A is consistent. We will prove that A is an answer set of R(D)
and A|l = A|l

By the construction of A, we have that A|; = 121|l Hence, to prove the lemma we need to
prove that A is an answer set of R(D). To do that, we will show that A is a minimal set of

literals which is closed under the rules of (R(D))A.

4For simplicity, here and in the following lemmas we assume that the set of defaults in D has the cardinality
less than or equal to the ordinal number w. However, the proofs presented in this paper can be expanded to
the general case.

39

Since D is a normalized domain description, (R(D))"

[—

T, (1)

if there is d s.t.
(la) default(d,l,[I']) € D,
(Ib)d ¢ A, and -l ¢ A

T, 2)

if there is d; s.t.

(2a) default(dy, —head(dy),[I']) € D,
(2b) prefer(dy,dy) € D, and

(2¢) dy & A.

Let r be a rule of (R(D))* whose body is satisfied by A, i.e.,

a. ' C A.

We consider two cases:

(i) r is of the form (1).

Since A|; = 121|l, from (1b) and (a) we conclude that

b. ~l g Aand I C A.

By Lemma 6.4, this, together with (1a) implies that [€ A and hence I € A, i.e.,

c. Ais closed under the rules of type (1) of (R(D))*.

consists of the following rules:

(ii) r is of the form (2). From (2a)-(2c) and (a), by the construction of A, we conclude

that dy € A, i.e.,

d. A is closed under the rules of type (2) of (R(D))*.

From (¢) and (d) we can conclude that

e. A is closed under the rules of (R(D))A.

We now prove the minimality of A.

Assume that there exists a set B C A which is closed under the rules of (R(D))A.

consider two cases:

(i) A\ Bl # 0.

We

Since D is hierarchical, there exists a rank function rank of D that satisfies the condi-

tions of Definition 5.3.

40

Let [€ A|;\ BJ; such that

f. rank(l) = min{rank(p) : p € A|;\ B|;}.

Since I € A and A|; = Al;, we have that [€ A. Let
fl. Af = {d : default(d,l,[I']) € D, T C A}.
Since A is an answer set of R(D), we have that

2. Af #£0.

Since the preference relation in D is well-ordered, there exists a minimal element d; of
A} such that

3. prefer(d;,dy) € D for d; € AF\ {d;}.
We will prove that

Assume the contrary, d; € A. By construction of R(YND), we conclude that there exists
a default d,, such that

gl. default(d,,—l,[A]) € D,
g2. A C A, and
g3. prefer(d,,d;) € D.

It follows from (f3) and (g3) and the fact that the preference order in D is well-ordered
that

g3. prefer(d,,d) € D for d € AY.
This, together with (gl) and (g2), implies that
gh. d e Afor de A}

which, in turn, implies that there exists no rule with the head [/ in R(D) whose body
is satisfied by A, i.e., [¢ A. This contradiction proves (g).

We now prove that
h. d; ¢ A.
Assume that (h) does not hold, i.e.,

hl. d]‘ c A.

41

Using the definition of A and the fact that A and A coincide on o-literals we can easily
check that there is d; such that

h2. default(d;,—l,[T]) € D
h3. prefer(d;,d;) € D
hi. T C A

From construction of R(D) and conditions (h2), (h3) we have that
h5. d; « I',not d; € R(YND)
First assume that

hé: d; ¢ A

Then, from (h4), (h5), and the fact that A is an answer set of R(ﬁ) we conclude that
d; € A which contradicts (g). Therefore,

h7. d; € A

This implies that there is a default dy of the form default(dy,1,[A]) € D such that
hs. AC A

h9. prefer(dy,d;) € D

Since the preference relation in D is total from (h3) and (h9) we conclude that

h10. prefer(dy,d;) € D

which contradicts d; being the minimal element of Af. This contradiction proves (h).
Recall that head(d;) = I and let © be its body. Since d; is best for I in A we have that
k.OCA

Since [€ A and A is consistent, =l & A. This, together with (h), implies that

. [—© € (R(D)A.

Since I ¢ B and B is closed under the rules of (R(D))*, from (1) we can conclude that
there exists a literal ' € @ such that I’ ¢ B. This, together with (k), implies that

m. '€ A\ B.

Since D is normalized and hence hierarchical, from condition 5 of Definition 5.3 we
have that rank(l’) < rank(l). This, together with (m), contradicts with (f) which
implies that Al; \ B|; = 0.

42

(i) Al; = B|;. Since B C A, there exists d; € A\ B. By the construction of A,
n. there exists a default d; € D of the form de fault(d;, ~head(d;),[I]) such that
nl. prefer(d;,d;) € D, d; ¢ A and
n2. I' C A.
(nl), together with the definition of (R(D))# implies that
n3. d; — I € (R(D))*.

This, together with the assumption that B is closed under the rules of (R(D))* and
Bl = Al;, implies that d; € B which contradicts the selection of d;.

We showed that no proper subset B of A is closed under the rules of (R(D))# and hence A
is an answer set of R(D). O

The next lemma is the reverse of Lemma 6.5.

Lemma 6.6 Let D be a static and normalized domain description with a basic preference
relation and A be an answer set of R(D). Then, there exists a completion D of D and an

answer set A of R(D) such that A|; = A,

Proof. We start with introducing some notation. Let P be a binary relation. By P* we
denote the transitive closure of P. For a o-literal [, we define,

At ={d:default(d,l,[l]) € D, T C A},

A7 ={d:default(d,=1,[T']) e D, I C A},

A= AfUA;, and

A'={d € D: head(d) € {l,~1}}

By <; we denote the order induced on A; by the preference relation of D.
In our further discussion we need the following well known result:

(*) if P is a well-founded strict partial order then there exists a well-founded total order
containing P.

Now we start our construction of D. Notice that if [€ A then, since <; is well-founded, it is
easy to prove that there exists a default d € A} which is a minimal element in A;. Let us

denote such a default by d(I).

Let

Xi(l) = {prefer(d(l),d) : d € A]}.

Xo(l) = {prefer(dy,dy) : prefer(dy,dy) € D,d dy € A'}.

43

For every atom p € lit(o) we define the set X, as follows:
(Xi(p)U Xa(p))m ifpe A
X, =1 (Xi(-p)U Xy(p))* if-pe A

Xa(p) otherwise

It is easy to see that X, is a well-founded, strict partial order on AP. Let Y, be a well-
founded, total order on A? which extends X, (existence of Y, is ensured by (*)). Obviously,
Upcatom (o) Yp is a well-founded, strict partial order on the set of defaults of D which extends
the preference relation in D.

Let Y be a well-founded, total order on the set of defaults of D which extends
UpEatom(U) i/p
Let
D=DUY.
It is easy to see that D is a consistent completion of D.
Now we will construct an answer set A of R(D) such that A|; = AJ..

U= {l:1€ lit(c) N heads(R(D)) s.t. rank(l) < i}U

{d € heads(R(D)) : rank(head(d)) < i}.

The sequence U = Uy, Uy, ... is monotone and continuous. Using the property of the rank
function from the definition of hierarchical domain description it is not difficult to check that

each U; is a splitting set of R(D) and that JU; is equal to the set of all literals occurring in

R(D). Hence, U is a splitting sequence of R(D).
Let T be a collection of all the rules from R(YND) whose heads belong to U; and let A; = ANU,.
We define a sequence Ag, Ay, . .. such that

la. A; is an answer set of 75.

1b. Al = A,

(i) Let Ay = A

Since both sets are empty conditions (1a) and (1b) are satisfied.

(i) assume that conditions (1a) and (1b) are satisfied by the already constructed set A; Let
T be the result of partial evaluation of the program T;y1 with respect to the set A;.

T will consists of the rules
(r2) [< not d,not =l where [is a o-literal.
and

(r1) dy < not dj.

44

Using the argument from Lemma 5.6 we can show that the program consisting of the rules
of T' of the form (rl) contains no negative odd cycles and therefore is consistent. Let S be
an answer set of this program and 57 = (A;41 \ A;)|;. We will show that

2. S:SOU51

is an answer set of T'. By the splitting set theorem it suffices to show that 57 is an answer
set of the partial evaluation of rules of the type (12) from T with respect to Sy. We denote
this partial evaluation by 7. This, in turn, is true iff

3. Sl == 7TSl.
To prove (3) let us first assume that
4. 1€ 5.

This implies that [€ A and hence A; # §. Consider d € A; which is minimal with respect to
well-ordering induced on A; by the preference relation from D. It is easy to check that, since
l € A, head(d) =1 and body(d) C A. Since D is hierarchical we have that body(d) C A;, and
hence, by inductive hypothesis,

4a. body(d) C A;.

Since d is minimal, by construction of D we have that there is no rule in 7" with d in the

head. Hence,

4b. d & So.

By construction of R(D) and conditions (4a) and (4b) we have that

4e. |« not =l € 7.

Since [€ A and A is consistent we conclude that =/ & A;;1. Therefore, =l & S;. Hence,
4d. [€ 75

Suppose now that

5. 1€ 7.

This implies that there is d and I' C A such that

default(d,[,T') € D.

From (4d) we have that =/ ¢ A and hence, by Lemma 6.4 we conclude that [€ A. Therefore
[€ S1 which concludes the proof of (3).

By the splitting set theorem, /L'+1 = %L U S is an answer set of T;11. Obviously, /L'+1 also
satisfies condition (1b). Now let

A=UA.
From construction we have that 121|l = Al;. Using the splitting sequence theorem it is easy
to check that A is an answer set of R(D). O

Lemma 6.7 Let D be a static and normalized domain description and A be an answer set

of R(D). Then, A, is an answer set of B(D).

45

Proof. Since D is normalized, A is consistent, it suffices to prove that Al; is a minimal set
of literals closed under the rules of B(D)"k.

Let

a. |« T € B(D)"l
and

b. I' C A,

By construction of B(D) and of B(D)Al, (a) implies that there exists a default d € D such
that

c. default(d,l,[I']) € D and =l ¢ AJ;.

Since A is an answer set of R(D), from (c), (b), and Lemma 6.4, we can conclude that [€ A
and hence [€ A|; which proves that

d. Al is closed under the rules of B(D)4.
We now prove the minimality of A|;.

Assume that there exists a set B C A|; which is closed under the rules of B(D)4l. We will
prove that the set of literals
C=BU{d :d; € A}

is closed under the rules of (R(D))*.

Since C' contains every d; in A, C' C A, and A is an answer set of (R(D))#, we have that
e. (C is closed under the rules of the form (2) of (R(D))*.

Let r be a rule of the form (1) of (R(D))* whose body is satisfied by C, i.e.,
fl. I T € (R(D))* and

2. ' CC.

By construction of (R(D))#, (f1) implies that there exists a default d such that
gl. default(d,l,[I']) € D, and

g2. =l & A.

By definition of B(D) and B(D)*l, and from (gl) and (g2) we conclude that

h. [+ T is a rule of B(D)"h.

which, together with (f2) and the assumption that B is closed under rules of (B(D))*lt implies
that [€ B and hence [€ C which, in turn, implies that

j. C is closed under the rule of the form (1) of (R(D))".

From (e) and (j) we can conclude that (' is closed under the rules of (R(D))# which together
with C' C A contradicts the fact that A is an answer set of R(D). This, together with (d),
implies that A, is an answer set of B(D). O

46

Lemma 6.8 Let D be a static and normalized domain description with a well-ordered pref-
erence order P and let A be an answer set of R(D). Then, A|; is a preferred answer set of

(D).

Proof. Lemma 6.7 shows that A|; is an answer set of B(D). We need to show that A, = Z
where 7 = C.,(B(D)) and C.,(B(D)) is defined as in Definition 6.1.

Let dg, dy, ... be the sequence of defaults in D, ordered by P.
Notice that

| — not =l €l B(D)

iff there exists a default d such that

Oa. default(d,l,[I']) € D, and

0b. I' C A,

(i) We first prove that Z C AJ;. Let
a. l€ 7.
This implies that there exists a default d; € D such that
bl. d; satisfies (0a) and (Ob), and
b2. the rule [« not [is not defeated by S;_;. (see Definition 6.1).
Let ¢ be the minimal integer such that
c. d; satisfies (b1) and (b2).
From (c¢) and (b2) and the definition of Z, we can conclude that
d. there exists no j < ¢ and A C A|; such that default(d;, -1, [A]) € D.

By construction of R(D) and (d), we conclude that there exists no rule of R(D) with
the head d; whose body is satisfied by A, which implies that

Furthermore, for every default dy such that ¢ < k and default(dy,—l,[A]) € D, it
follows from (b1), (e), and the construction of (R(D))* that

f. d € A.
This implies that
g. there exists no rule of (R(D))# with the head =/ whose body is satisfied by A.

This implies that

47

h. =l ¢ A

From (h), (bl), and Lemma 6.4, we can conclude that [€ A and hence [€ A|; which,
together with (a) proves that

i Z C Al
(ii) We now prove that A|; C 7. Let
k. [€ Al.
Since A is an answer set of R(D), there exists a default d such that
1. default(d,l,[I']) € D,
m. ' C A, and -] & A.
which implies that [« not =l is a rule of 4tB(D). This indicates that
nl. [€ Z or
n2. -l € 7.

If (n2) holds, then, by (j), =l € A|;, which, together with | € A, contradicts the fact
that Al; is consistent. Hence, (nl) holds, i.e., [€ Z which, together with (k) entails

0. A|l g Z.
The lemma is proved by (o) and (j). O
We now prove the reverse of Lemma 6.8.

Lemma 6.9 Let D be a static and normalized domain description with a well-ordered pref-
erence order P. Let A be a preferred answer set of II(D). Then, there exists an answer set

B of R(D) such that B|; = A.

Proof. First, notice that since D is normalized, R(D) is consistent and therefore, by Lemma
6.8, B(D) is consistent. Thus, A is consistent.

Let dy,dy, ... be the sequence of defaults in D, ordered by P. We define a sequence of sets
of literals A2, as follows.

BO :B

B, U{d,11} if there exists 1 <n s.t.
(0a) default(d;,—head(d,41),[']) € D,
(0b) I' C A, and

B = (0c) d; & A,.

B, otherwise

48

Let B = U2, B;. Obviously B is consistent and B|; = A. We prove that B is an answer set
of R(D), i.e., B is a minimal set of literals closed under the rules of (R(D))®. By definition,
(R(D))? consists of the following rules:

[« T. (1)

if there is d s.t.
(la) default(d,l,[I']) € D,
(Ib)d¢ B, and -l ¢ B

(R(D)? =4 dy « T. (2)

if there is d; s.t.

(2a) default(dy,l,[T']) € D,
(2b) prefer(dy,dy) € D,
(2¢) head(dy) = =1, and
(2d) &y ¢ B.

Let r be a rule of (R(D))? whose body is satisfied by B, i.e.,
a. I' C B.

We consider two cases:
(i) r is of the form (1).
By the construction of B(D) we have that
b. [— I',not =l € B(D).
From B|; = A, (a), and (1b), we conclude that
c. T C Aand —l ¢ A.

Since A is an answer set of B(D), from (b) and (c) we conclude that [€ A and hence,
[€ B, which proves that

d. B is closed under the rules of the form (1) of (R(D))B.
(ii) r is a rule of form (2).

By construction of B and from (a) and (2a)-(2d), we can conclude that dy € B which
implies that

e. B is closed under the rules of the form (2) of (R(D))B.

49

It follows from (e) and (d) that
f. B is closed under the rules of (R(D))B.
We now prove the minimality of B.

Assume that there exists a set of literals €' C B and C is closed under the rules of (R(D))B.
We will prove that

g. C|; is closed under the rules of B(D)".

Let r be a rule of B(D)# whose body is satisfied by C|y, i.e., r is of the form

hl. [+ T € (B(D))*, and

h2. T' C C,.

By construction of B(D)#, we conclude that there exists a default d; in D such that
jl. default(d;,1,[I']) € D, and

j2. 0l & A.

(j1) and (h2) imply that the rule [« not =l belongs to “B(D) which, together with (j2) and
the assumption that A is a preferred answer set of II(D), implies that [€ A.

We will prove that

l. d; ¢ B.

Assume the contrary, i.e.,

m. d; € B.

By the construction of B, there exists j < 7 such that

nl. default(d;,—l,[A]) € D,

n2. A C B, and

n3. d; € B.

From (nl) and (n2) and the construction of 4B(D), we can conclude that
p. =l « not [is a rule of AB(D).

From [€ A, the fact that A is a preferred answer set of II(D), and (p), we can conclude that
there exists a k < j such that

ql. default(dy,1,[0]) € D,

q2. © C A, and

q3. for every o, o < k, if default(d,,—l,[A]) € D, then A € A.
From (q3) and the definition of R(D)? we have that

r. dp € B.

From (r), (q1), (q2), and the construction of B we have that
s.dj e Aj;1 CB

30

which contradicts with (n3), i.e., we have proved (I).

It follows from (j1), (j2), and (1) that [« ' € (R(D))? which, together with the assumption
that C is closed under the rules of (R(D))? and I' C C, implies [€ C, and hence, [€],
which proves (g).

Since A is an answer set of B(D), from (g) we can conclude that C'|; = A, which, together
with the assumption that C' C B, implies that there exists some d; € D such that

t. d; e B\ C.

By the construction of B, (t) implies that there exists a j < ¢ such that
ul. default(d;,—l,[A]) € D,

u2. A C B, and

u3. d; € B.

Since j < i, by the ordering P, we conclude that prefer(d;,d;) € D. This, together with
(ul) and (u3), implies that

v. d; + Ais a rule of (R(D))B.

It follows from (u2), (v), and the assumption that C is closed under the rule of (R(D))?
that d; € C' which contradicts with (t). In other words, B is a minimal set of literals which
is closed under (R(D))?, i.e., B is an answer set of R(D). O

We are now ready to prove the Theorem 6.1.

Proof of Theorem 6.1. Let Dy be the normalization of a static domain description D.

By Lemma 6.2, D |= holds_by _de fault(]) iff

a. L€ U(D) or R(Dy) E 1,

and by Lemma 6.3, II(D) |~ [iff

b. 1 € U(D) or II(Dy) p~ 1.

By Lemmas 6.6-6.8, we have that

c. R(Dy) E Liff I(Dy) ~ 1.

The conclusion of theorem 6.1 follows immediately from (a), (b), and (c). 0
The theorem 6.1 can be used to better understand properties of both formalizations. It
implies, for instance, that queries to Brewka’s prioritized programs corresponding to domain
descriptions of Ly can be answered by the SLG inference engine. It can also be used for a

simple proof of the fact that static, hierarchical domain descriptions with basic preference
relations are monotonic with respect to prefer, i.e. for any such D; and Dy with preference

relations P; and P, such that Py C Py, if Dy [then Dy = 1.

51

7 Conclusions

In this paper we

e introduced a language L(o) capable of expressing strict rules, defaults with exceptions,
and the preference relation between defaults;

o gave a collection of axioms, P, defining the entailment relation between domain descriptions

of L(o) and queries of the form holds(l) and holds_by_de fault(l);

e demonstrated, by way of examples, that the language and the entailment relation is capable
of expressing rather complex forms of reasoning with prioritized defaults;

e gave sufficient conditions for consistency of domain descriptions;

e described a class of domain descriptions for which our treatment of prioritized defaults
coincides with that suggested by G. Brewka in [6].

This work can be extended in several directions. First, the results presented in the paper
can be generalized to much broader classes of theories of £. We also plan a more systematic
study of the class of logic programs defined by P (i.e., programs of the form P U D). It may
be interesting and useful to check if cautious monotony [16] or other general properties of
defeasible inference ([22, 11]) hold for this class of programs. Another interesting class of
questions is related to investigating the relationship between various versions of P. Under
what conditions on D, for instance, we can guarantee that addition of various axioms from
section 4 do not change the set of conclusions. When such additions preserve conclusions of
the revised theory? Finally, we want to see if a better language can be obtained by removing
from it the notion of conflict. In the current language the statement prefer(dy,dsy) stops
the application of default dy if defaults dy and dy are in conflict with each other and the
default dy is applicable. It may be more convenient to make prefer(dy, dz) simply mean that
dy 1s stoped if dy is applicable. More experience with both languages is needed to make a
justified design decision. We hope that answers to these and similar questions will shed new
light on representation and reasoning with prioritized defaults.

Acknowledgment

We are grateful to Gerhard Brewka for an illuminating discussion on reasoning with priori-
tized defaults. We also would like to thank Alfredo Gabaldon for useful discussions and help
with running our examples on SLG. Special thanks also to Vladik Kreinovich who helped us
to better understand the use of priorities in the utility theory and whose remarks helped us
to better understand our own work.

References

[1] Baader, F. and Hollunder, B,: Priorities on Defaults with Prerequisite and their Ap-
plication in Treating Specificity in Terminological Default Logic, Journal of Automated

Reasoning, 15:41-68, 1995.

52

2]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Baral, C. and Gelfond M.: Logic Programming and Knowledge Representation, Journal
of Logic Programming, 19,20: 73-148, 1994.

Brass, S. and Dix, J.: A Characterization of the Stable Semantics by Partial Evaluation,
Proc. of the 10th Workshop on Logic Programming, Zuerich, Oct. 1994, 1994.

Brewka, G.: Reasoning about Priorities in Default Logic, Proc. AAAI-94, Seattle, 1994

Brewka, G.: Adding Priorities and Specificity to Default Logic, Proc. JELIA 94,
Springer LNAT 838, 247-260, 1994

Brewka, G.: Preferred Answer Sets, Proc. ILPS’97 Postconference Workshop, 76-88,
1997.

Covington M.A., Nute D., and Vellino A.: Prolog Programming in Depth, Prentice Hall,
NJ, 1997.

Chen, W. and Warren, D.S.: Query Evaluation under the Well-Founded Semantics, The
Twelfth ACM Symposium on Principles of Database System, 1993.

Chen, W.: Extending Prolog with Nonmonotonic Reasoning, Journal of LP, 169-183,
1996.

Delgrande , J.P., Schaub, T.H.: Compiling Reasoning with and about Preferences into
Default Logic, IJCAi’97, (1997).

Dix, J.: Classifying Semantics of Logics Programs. In Proc. of the International Work-
shop in Logic Programming and Nonmonotonic Reasoning, 166180, Washington, DC,
1991.

Dung, P.M.: On the Relations Between Stable and Well-Founded Semantics of Logic
Programming, Theoretical Computer Science 105:7-25 (1992).

Dung, P.M.: On the Acceptability of Arguments and its Fundamental Role in Non-

monotonic Reasoning and Logic Programming and N-person game. Al (77) 2:321-357
(1995).

Fages, F.: Consistency of Clark’s Completion and Existence of Stable Models, Technical
Report 90-15, Ecole Normale Superieure, 1990.

Fishburn, P.C.: Nonlinear Preference and Utility Theory (Johns Hopkins University
Press, Baltimore, 1988).

Gabbay, D.: Theoretical Foundation for Nonmonotonic Reasoning in Experts System.
In K. Apt, editor, Logics and models of Concurrent Systems, 439-457, Springer Verlag,
NY, 1985.

Gelfond, M., Gabaldon, A.: From Functional Specifications to Logic Programs, 355-370,
Proc. of ILPS’97, 1997.

33

[18]

[19]

[20]

[21]

[22]

23]
[24]

[25]

[26]

[27]

28]

[29]

[30]

31]

32]

Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive
Databases, New Generation of Computing 365-387, 1991.

Grosof, B.N: Prioritized Conflict Handling for Logic Programs, 197-212, Proc. of
ILPS™97, 1997.

Gordon, T.: The Pleadings Game: An Artificial Intelligence Model of Procedural Jus-
tice. Ph.D. Dissertation, TU Darmstadt.

Kosheleva, O.M. and Kreinovich, V.Ya.: Algorithm Problems of Nontransitive (SSB)
Utilities, Mathematical Social Sciences 21 (1991) 95-100.

Lehnmann, D., Kraus, S., and Magidor, M.: Nonmonotonic Reasoning, Preferential

Models and Cumulative Logics, AT (44) 1: 167-207, 1990.
Lifschitz, V., Turner, H.: Splitting a Logic Program, Proc. of ICLP, MIT Press, 1994.

Marek, W. and Truszczynski, M.: Nonmonotonic Logic: Context-Dependent Reasoning,

Springer, 1993.
Nelson, D.: Constructible Falsity, JSL 14(1949), 16-26.

Nute, D.: A Decidable Quantified Defeasible Logic. In Prawitz, D., Skyrms, B., and
Westerstahl, D. (eds): Logic, Methodology and Philosophy of Science IX. Elsevier Sci-
ence B.V.; 263284, 1994.

Pearce, D.: A New Logical Characterization of Stable Models and Answer Sets,
NMELP’96, Springer, 57-70, 1997.

Prakken, H. and Sartor, GG,: On the relation between legal language and legal argument:
assumptions, applicability and dynamic priorities. Proc. of the Fifth International Con-

ference on Al and Law, Maryland, College Park, MD USA, 1-10, 1995.

Prakken, H. and Sartor, G.: Argument-based extended logic programming with defea-
sible priorities. Journal of applied non-classical logics, 1,2 (7), 25-77, 1997.

Reiter, R.: On closed world data bases. In H. Gallaire and J. Minker, editors, Logic and
data bases, 55-76, 1978.

Reiter R.: A Logic for Default Reasoning in Readings in Nonmonotonic Reasoning,
Edited by M. L. Ginsberg, Morgan Kaufmann Publishers, Inc., Los Altos, California
(1987) 68-93

Zhang, Y. and Foo , N.Y.: Answer Sets for Prioritized Logic Programs, 69-84, Proc. of
ILPS’97, 1997.

o4

