Logic Programming and Knowledge
Representation — the A-Prolog perspective.

Michael Gelfond® Nicola Leone?

2 Department of Computer Science,
Texas Tech Unwversity
Lubbock, Tezas, 79409-310/
mgelfond@cs.ttu.edu

b Department of Mathematics,
Unwersity of Calabria,
87030 Rende (CS), Italy,

leone@unical.it

Abstract

In this paper we give a short introduction to logic programming approach to knowl-
edge representation and reasoning. The intention is to help the reader to develop a
'feel” for the field’s history and some of its recent developments. The discussion is
mainly limited to logic programs under the answer set semantics. For understand-
ing of approaches to logic programming build on well-founded semantics, general
theories of argumentation, abductive reasoning, etc., the reader is referred to other
publications.

1 Introduction

If we want to design an entity (a machine or a program) capable of behaving
intelligently in some environment, then we need to supply this entity with
sufficient knowledge about this environment. To do that, we need an unam-
biguous language capable of expressing this knowledge, together with some
precise and well understood way of manipulating sets of sentences of the lan-
guage which will allow us to draw inferences, answer queries, and update
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both the knowledge base and the desired program behavior. A good knowl-
edge representation language should allow construction of elaboration tolerant
knowledge bases, i.e. bases in which small modifications of the informal body
of knowledge correspond to small modifications of the formal base represent-
ing this knowledge. Around 1960, McCarthy [83], [84] proposed the use of
logical formulas as a basis for a knowledge representation language of this
type. It was soon suggested, however, that this tool is not always adequate
[94]. This may be especially true in modeling commonsense behavior of agents
when additions to the agent’s knowledge are frequent and inferences are often
based on the absence of knowledge. It seems that such reasoning can be better
modeled by logical languages with nonmonotonic consequence relations which
allow new knowledge to invalidate some of the previous conclusions. In precise
terms a consequence relation |= (over language L) is called nonmonotonic if
there are formulas A and B and a set of formulas T such that 7' = B and
T, A = B. Obviously the consequence relation of classical logic does not satisfy
this property and is, therefore, monotonic.

The above observation has led to the development and investigation of new
logical formalisms, nonmonotonic logics. The best known of them are circum-
scription [85,86], default logic [111], and nonmonotonic modal logics [89,88,95].
All of these logics are super-classical, i.e. can be viewed as an extension of clas-
sical predicate or propositional logic.

Another direction of research, started by Green [55], Hayes [56] and Kowalski
[61], and continued by many others, combined the idea of logic as a repre-
sentation language with the theory of automated deduction and constructive
logic. This led Kowalski and Colmerauer to the creation of logic programming
[61,62,124] and the development of a logic programming language, Prolog [23].

Even though logic programming and nonmonotonic logic share many common
goals and techniques, for some time there were no strong ties between the two
research communities. Originally, Prolog was defined as a small subset of pred-
icate calculus. This dialect of Prolog is now called Pure Prolog. The restricted
syntax of Pure Prolog makes it possible to efficiently organize the process of
inference, while its semantics relies heavily on the classical, model-theoretic
notion of logical entailment. Unlike nonmonotonic logics, with their emphasis
on expressiveness, efficiency and development of programming methodology
seemed to be the main concern of the logic programming community.

With time, however, Prolog evolved to incorporate some non-classical, non-
monotonic features, which made it closer in spirit to the nonmonotonic log-
ics mentioned above. The most important nonmonotonic feature of modern
Prolog is negation as failure. The initial definition of this construct, incor-
porated in the original Prolog interpreter, was purely procedural, which in-
hibited its use for knowledge representation and software engineering, as well



as for the investigation of the relationship between logic programming and
other nonmonotonic formalisms. Work, started by Clark and Reiter in the
late 70’s [30,110], was aimed at the development of a declarative semantics for
logic programs with negation as failure. Further work in this direction proved
to be fruitful for logic programming as well as for artificial intelligence and
databases. The results uncovered deep similarities between various, seemingly
different, approaches to formalization of nonmonotonic reasoning and shed
a new light on the nature of rules and the negation as failure operator of
Prolog. Among other things this lead to the development of the knowledge
representation and reasoning language A-Prolog discussed in this paper and
several other logic programming based languages with non-monotonic seman-

tics [1,16,57,21,24,127].

Unlike Prolog these languages have well-defined declarative semantics inde-
pendent of a particular inference mechanism. Unlike the ’original’ nonmono-
tonic logics they are not super-classical. Instead they use a collection of new
connectives which we believe are often more suitable for representing various
forms of non-mathematical knowledge than their classical counterparts.

Papers published in this issue are selected from those presented at LPNMR99*
— 5th International Conference on Logic Programming and Non-monotonic
Reasoning, held in 1999 in El Paso, Texas. These papers are significant exten-
sions of the respective versions presented at the conference. They deal with
several different aspects of LPNMR: Knowledge Representation and Reason-
ing [72], Computational Complexity [54], Systems [118], Updates [2], Revision
[76], and Applications [31]. The research work presented in [54] received the
best paper award at LPNMR99.

This introductory paper is aimed at providing potential readers with some
background information. This is not a survey of the field but rather a small
collection of ideas and results put together to help the reader to develop a 'feel’
for the field’s history and some of its recent developments. There is by now a
substantial number of books and surveys closely related to logic programming
and nonmonotonic reasoning. Accurate mathematical exposition of the related
formalisms can be found in [82], [17], [73], [74], [71]. For applications to various
aspects of knowledge representation one can look at [51], [9], [116],[122], [1],
[10], [32], [52],[28], [102], [39], [45], [100],[98],[115]. Issues related to reasoning
methods of Prolog are discussed in [3], [101], [97]. Additional information and
important historical perspective can be obtained from [91], [7], [92]. An in
depth coverage of many aspects of knowledge representation and reasoning
with A-Prolog can be found in the forthcoming book [8]; several logic-based
works in artificial intelligence are collected in [93].

! The first LPNMR was organized in 1991 by Anil Nerode. Since that time the
conference served as the main meeting place of people interested in both subjects.



The rest of the paper is organized as follows. Section 2 presents the syntax
and semantics of A-Prolog and defines a couple of relevant syntactic fragments
of it. Section 3 addresses computational aspects; it describes algorithms for
reasoning associated with A-Prolog programs. Section 4 treats knowledge rep-
resentation; it illustrates the basic methodology of representing knowledge in
A-Prolog by examples. Section 5 highlights the relationship of A-Prolog to
other nonmonotonic formalisms. Section 6 discusses the treatment of nega-
tion in logic programming. Section 7 analyzes the computational complexity
of A-Prolog and its fragments, paying special attention to the impact of syn-
tactic restrictions on negation and disjunction. Section 8 comments on some
general properties of the entailment operators. Finally, Section 9 draws our
conclusions.

2 The A-Prolog Language

We start with a description of syntax and semantics of A-Prolog (also called
Answer Set Programming [81]) - a logic programming language based on an-
swer sets/stable model semantics of [49,50].

2.1 Syntax

The syntax of A-Prolog is determined by a signature o consisting of types,
types(o) = {m,...,Tm}, object constants obj(r,0) = {cg,...,cn} for each
type 7, and typed function and predicate constants func(c) = {fo,..., fr}
and pred(o) = {po,...,pn}. We will assume that the signature contains sym-
bols for integers and for the standard functions and relations of arithmetic.
Terms are built as in typed first-order languages; positive literals (or atoms)
have the form p(¢1,...,t,), where t’s are terms of proper types and p is a
predicate symbol of arity n; negative literals are of the form —p(ty,...,¢,).
The symbol — is called classical or strong negation.? Literals of the form
p(ti,...,t,) and —p(t1,...,t,) are called contrary. By [ we denote a literal

2 Logic programs with two negations appeared in [50] which was strongly influenced
by the epistemic interpretation of logic programs given below. Under this view —p
can be interpreted as “believe that p is false” which explains the term “classical
negation” used by the authors. A different view was advocated in [104,126] where
the authors considered logic programs without negation as failure but with —. They
demonstrated that in this context logic programs can be viewed as theories of a
variant of intuitionistic logic with strong negation due to [96]. For more recent work
on this subject see [106],[105]. We believe that both views proved to be fruitful and
continue to play an important role in our understanding of A-Prolog. A somewhat
different view on the semantics of programs with two negations can be found in [1].



contrary to [. Literals and terms not containing variables are called ground.
The sets of all ground terms, atoms and literals over ¢ will be denoted by
terms(o), atoms(o) and lit(c) respectively. For a set P of predicate symbols
from o, atoms(P, o) (lit(P, o)) will denote the sets of ground atoms (literals)
of o formed with predicate symbols from P. Consistent sets of ground literals
over signature o, containing all arithmetic literals which are true under the
standard interpretation of their symbols, are called states of ¢ and denoted
by states(o).

A rule of A-Prolog is an expression of the form

lpor ... orly < Ly, l,not L 1,...,not 1, (1)

where [;’s are literals, not is a logical connective called negation as failure
or default negation, and or is called epistemic disjunction. The following
notation will be useful for further discussion. A set {not [;,...,not l;;;} will
be denoted by not {l;,...,li1;}. If r is a rule of type (1) then head(r) =
{lo, ..., lg},pos(r) = {lgs1,.-.,lm},neg(r) = {lmy1,...,0n}, and body(r) =
pos(r),not neg(r). A rule such that head(r) = 0 is called a constraint and is
written as

— i1y oy lynot Lyyq, ... not 1, (2)

If £ = 0 then we write

lo < l1,...,lm,not lyi1,...,n0t L, (3)

Default negation is interpreted as a new logical connective. Intuitively not [
says that there is no reason to believe in [. Notice also the use of the symbol
or instead of classical V. The meaning of or differs from that of V. A formula
AV B says that “A is true or B is true” while a rule, A or B <, may be
interpreted epistemically and means “A is believed to be true or B is believed
to be true”. (This approach can be viewed as a generalization of an early work
by J. Minker [90].) A rule 7 such that body(r) = 0 is called a fact and is often

written as
lp or ... orly. (4)

Definition 2.1 A program of A-Prolog is a pair {o, [} where o is a signature
and II is a collection of rules of the form (1). (In this paper we will often refer
to programs of A-Prolog as logic program and denote them by their second
element II. The corresponding signature will be denoted by o(II).)



2.2 Semantics

In our definition of semantics of A-Prolog we assume that the I's in rule (1) are
ground. Rules with variables (denoted by capital letters) will be used only as a
shorthand for the sets of their ground instantiations. This approach is justified
for the so called closed domains, i.e. domains satisfying the domain closure
assumption [110] which asserts that all objects in the domain of discourse have
names in the language of I1. Even though the assumption is undoubtedly useful
for a broad range of applications, there are cases when it does not properly
reflect the properties of the domain of discourse. Semantics of A-Prolog for
open domains can be found in [9], [58].

The answer set semantics of a logic program II assigns to II a collection of an-
swer sets — consistent sets of ground literals over signature o (II) corresponding
to beliefs which can be built by a rational reasoner on the basis of rules of II.
In the construction of these beliefs the reasoner is assumed to be guided by
the following informal principles:

e He should satisfy the rules of II, understood as constraints of the form: If
one believes in the body of a rule one must believe in at least one of the
literals from the rule’s head.

e He should adhere to the rationality principle which says that one shall not
believe anything he is not forced to believe.

The precise definition of answer sets will be first given for programs whose
rules do not contain negation as failure. Let II be such a program and let S
be a state of o(II).

We say that S is closed under II if, for every rule

{lo,---ylk}klk—i-la---,lm (5)

of IT such that {l;41,...,ln} C S, {lo,..., i} NS # 0. (Notice that for a

constraint this condition means that the body is not contained in S.)

Definition 2.2 (Answer set — part one)
A state S of o(Il) is an answer set for II if S is minimal (in the sense of
set-theoretic inclusion) among the sets closed under II. O

It can be shown that a program without epistemic disjunction can have at
most one answer set. To extend this definition to arbitrary programs, take
any program II, and let S be a state of o(II). The reduct, 1%, of II relative to
S is the set of rules

{lo,...,lk} — Zk_|_1,... ,Zm
for all rules (1) in II such that {l,,11,...,0L,} NS = @. Thus II° is a program



without negation as failure.

Definition 2.3 (Answer set - part two)
A state S of o(Il) is an answer set for Il if S is an answer set for I15. O

(The above definition differs slightly from the original definition in [50], which
allowed the inconsistent answer set, lit(c). Answer sets defined in this paper
correspond to consistent answer sets of the original version.) Knowledge repre-
sented by programs of A-Prolog is frequently used for two different reasoning
tasks, associated with two entailment relations defined below:

Definition 2.4 (Entailment Relations)

(1) A program II cautiously entails a literal [ (II |= 1) if { belongs to all answer
sets of 1I.

(2) A program II bravely entails a literal | (I |, {) if [ belongs to some
answer sets of 11.0

Obviously for programs having precisely one answer set, brave and cautious
entailment coincide.

Some query answering systems for A-Prolog are based on the notion on cau-
tious entailment; other use the brave one. Given a query [ and program II
the cautious systems will first check if II |= [. If this is the case the cautious
answer to [ will be yes; if II = [ the cautious answer will be no; otherwise it
will be unknown. In contrast, the brave systems attempt to find an answer set
of IT containing (. If there is such an answer set, the brave answer to [ will be
yes; otherwise it will be no.

Example 2.1 Consider for instance a logic program

p(a) < not q(a).
Iy { p(b) <+ not q(b).

q(a).

Using the definition of answer sets one can easily show that Sy = {¢(a),p(b)}
is an answer set of this program. In the next section we will introduce simple
techniques which will allow us to show that it is the only answer set of II,.
Thus Iy | q(a), Iy = q(b), I1y = —q(b) and IIj’s cautious answers to queries
¢(a) and g(b) will be yes and unknown respectively. The corresponding brave
answers will be yes and no.



If we expand Il by a rule

—¢(X) + not q(X) (6)

the resulting program
II; =1, U (6)

would have the answer set S = {q(a),—q(b),p(b)} and hence the cautious
answer to query ¢(b) will become no. The brave answer to ¢(b) will not change.
(Notice however that the brave answer to query —¢g(b) will change from no to
yes.)

Rule (6), read as “if there is no reason to believe that X satisfies q then it does
not” is called the closed world assumption for relation ¢[110]. It guarantees
that the reasoner’s beliefs about ¢ are complete, i.e. for any ground term ¢
and every answer set S of the corresponding program, ¢(t) € S or —¢(t) € S.

It is worthwhile noting that the brave inference operator =, may entail a
literal [ and its contrary .

Example 2.2 Consider the following program.

p(a) <« not —p(a).
—p(a) < not p(a).

It is easy to see that the above program has two answer sets, namely, {p(a)}
and {—p(a)}. Thus, both p(a) and —p(a) are brave consequences of the pro-
gram; while the program does not have any cautious consequence.

The cautious inference operator may entail, at the same time, a literal [ and
its contrary [ only if the program does not have any answer set.

2.3 Program Properties

In this section we discuss several useful properties of logic programs. We hope
that they help the readers to better understand the notion of answer set and to
provide them with some insight into comparatively rich mathematical theory

of A-Prolog.

2.3.1 The Basics

The following simple propositions ([77], [9], [66]) are frequently used to estab-
lish basic properties of logic programs.



Proposition 2.1 For any answer set S of a logic program II:

(a) For any rule (1) from II, if {l;41,...,0n} C S and {lyy1,...,0,} NS =0
then there exists an ¢, 0 < ¢ < k such that [; € S.

(b) If 1 € S thenlis supported by II; i.e., there exists a rule r € II of the type (1)
such that {1, .-+, ln} € S, fnpty- -yl 30S = 0, and {ly, ..., 43NS = {1},

Proposition 2.2 For any program II if Sy and S; are answer sets of II and

S() Q Sl then SO = Sl-

Let us use these propositions to show that Sy = {¢(a),p(b)} is the only answer
set of program Il from Example 2.1. Suppose S; is an answer set of II;. By
Proposition 2.1 we have that g(a) € Si, ¢(b) € Si, p(b) € Si, and hence,
Sy C S;. By Proposition 2.2 we have that Sy = 5.

Programs of A-Prolog may have one, many, or zero answer sets. One can use
the above propositions and the definition of answer sets to show that programs

I, = {p(a) < not p(a).}

and
II; = {p(a). —p(a).}

have no answer sets while program Il

e(0).

I, e(s(s(X))) < not e(X).
p(s(X)) e e(X),not p(X)
pX) e e(X),not p(s(X).

has an infinite collection of them.

Finally, let us look at a few examples containing connectives or and —. It is
easy to see that, due to the minimality condition in the definition of answer
set, program

IT; = {p(a) or p(5).}

has two answer sets, S; = p(a) and Sy = p(b). However, it will be wrong
to view epistemic disjunction or as exclusive. We say that a conjunction
Q =1l N...NL, of literals is true in a set S if [;,...,l, € S; =Q is true in S if
for some i, [; € S; otherwise @ is undefined in S. Obviously, neither p(a) A p(b)



nor —(p(a) A p(b)) holds in Sy, Sy and therefore II;’s answer to query @ will
be unknown. It is instructive to contrast II; with a program

IIg = II; U {—p(a) or —p(b)}

which has answer sets S; = {p(a), p(b)} and Sy = {p(b), ~p(a)} and clearly
contains —(p(a) A p(b)) among its consequences.

The notion of answer set is an extension of an earlier notion of stable model
defined in [49] for normal logic programs (nlp). Syntactically, an nlp is simply
a logic program consisting of rules of type (3) where I’s are atoms. But, even
though stable models of an nlp II are identical to its answer sets, the meaning
of II under the stable model semantics is different from that under answer
set semantics. The difference is caused by the closed world assumption ‘hard-
wired’ in the definition of stable entailment |=,: an nlp II &, —p(a) iff for
every stable model S of II, p(a) € S. In other words the absence of a reason
for believing in p(a) is sufficient to conclude its falsity. To match stable model
semantics of Il in terms of answer sets, we need to expand II by an explicit
closed world assumption,

CWA(II) =1TU {-p(X) < not p(X)}

for every predicate symbol p of II. Now it can be easily shown that for any

ground literal [, IT =, Liff IT = L.

The next proposition (see [50], [9]) shows how programs of A-Prolog can be
reduced to programs without —. We will need the following notation:

For any predicate p occurring in II, let p’ be a new predicate of the same arity.
The atom p'(¢y,...,t,) will be called the positive form of the negative literal
=p(ty,...,t,). Every positive literal is, by definition, its own positive form.
The positive form of a literal [ will be denoted by I™. I, called positive form
of II, stands for the normal logic program obtained from II by replacing each
rule (1) by

N i S P A

?'m)?

not It ., ... ,not I}
and adding the rules

—p(te, s tn),p (b1, o t0)

for every atom p(ty,...,t,) of o(II). For any set S of literals, S* stands for
the set of the positive forms of the elements of S.

Proposition 2.3 A set S C lit(o(II)) is an answer set of II if and only if S*
is an answer set of ITT. a

10



It is worthwhile noting that some answer set finders including DLV [27,42]
and Smodels [118], [99], use the above rewriting technique to implement strong
negation.

2.3.2 Some Syntactic Properties of Programs

In this section, we introduce two syntactically defined classes of logic programs
with a number of useful and interesting properties. These and similar proper-
ties are often used for proving correctness of A-Prolog based knowledge and
reasoning systems. First we need the following

Definition 2.5 Functions || || from ground atoms of o(II) to ordinals are
called level mappings of II.

Level mappings give us a useful technique for describing various classes of
programs.

Definition 2.6 A logic program II is called (locally) stratified [4], [107] if
there is a level mapping || ||s of II such that for every rule r of II

(1) For any [ € pos(r), and for any ' € head(r), ||l||s < [|I'|s;
(2) For any [ € neg(r), and for any I' € head(r), ||!||s < [|I'||s-

[t is easy to see that program II; from section 2 is stratified while programs
II, and II4 are not.

Theorem 2.1 A locally stratified normal program has exactly one answer
set.

The theorem is an easy consequence of the results of [4], [107] which establish
existence and uniqueness of the intended (perfect) model of locally stratified
logic program and the results showing that perfect models of such programs
coincide with their stable models. It is worthwhile noting that the above state-
ment holds for normal logic programs; the presence of epistemic disjunction
or the presence of strong negation invalidates the theorem. For instance, the
locally stratified program {a or b} has two answer sets (namely, {a} and
{b}); while the program {a,—a}, which also is locally stratified, does not have
any answer sets at all. Theorem 2.1 is an example of a collection of results
establishing existence and uniqueness of answer sets.

Another interesting class consists of head-cycle free programs.

Definition 2.7 A logic program II is called head-cycle free (hcf) [11], if there
is a level mapping || ||n of IT such that for every rule r of II

(1) For any [ € pos(r), and for any ' € head(r), ||||n < ||I'||n;

11



(2) For any pair I,1I' € head(r) ||I||n # ||I'||n-
Example 2.3 Consider the following program II5.

a or b.

a + b.

It is easy to see that II; is head-cycle free. Consider now program
Hg = H7 U {b — a}

Program Il is not head-cycle free, since a and b should belong to the same
level by Condition (1); while they cannot by Condition (2).

Among other things head-cycle free programs are interesting because epistemic
disjunction can be safely eliminated from them by “shifting” some head atoms
to the bodies of the rules. More precisely, by sh(II) we denote the disjunction-
free program obtained from II by substituting every rule of the form

ay or ... orap < by,...,b,,not cy,...,not c,

by the following £ rules:

a; < by,...,b,,not cy,...,not c,,not ay,...,not a;_1,not a;.1,...,not a,

where ¢ ranges over interval [1...k].

Theorem 2.2 [11]If II is a head-cycle free program, then I and sh(II) have
exactly the same answer sets.

It is easy to see that the head-cycle free condition is essential: program Ilg
above has answer set {a,b}; while sh(Ilg) has none. Later we will show that,
in general, epistemic disjunction cannot be eliminated from A-Prolog without
loss of the expressive power of the language.

3 Reasoning algorithms of A-Prolog

There are different systems which can be used for reasoning with programs
of A-Prolog. The choice of the system normally depends on the form of the
program and the type of queries one wants to be answered. Suppose for in-
stance that our program II has an infinite Herbrand universe and belongs to

12



the class of so called acyclic programs [5]: A program is called acyclic if it has
a level mapping || || such that for any atom [ occurring in the body of a rule
with the head [y, ||lp|| > ||{||- A normal acyclic logic program II is stratified
and therefore has unique answer set. It can be shown that various queries to
IT can be answered by a variety of bottom-up evaluation algorithm (see for in-
stance [5]). Moreover, acyclicity of R, together with some results from [6,120]
guarantee that the SLDNF resolution based interpreter of Prolog will always
terminate on atomic queries and produce the intended answers. Similar ap-
proximation of the A-Prolog entailment for a larger classes of programs with
unique answer sets can be obtained by the system called X$B [21] implement-
ing the well-founded semantics of [125]. Of course none of these traditional
logic programming inference algorithms work for programs with multiple an-
swer sets. Some algorithms addressing reasoning with such programs are based
on the close relationship between answer sets and truth maintenance systems
([38], [37],[47]). In recent years however a number of substantially more effi-
cient algorithms were developed to reason with programs with finite Herbrand
universes, and a number of modern A-Prolog systems are now available. Two
best known systems are among them DLV [27,42] and SMODELS [118]; but
also other systems support A-Prolog to some extent, including CCALC [87],
DCS [33], QUIP [34], and DeRes [22].

In this section, we briefly sketch one of such algorithms — the procecure under-
lying the computational engine of the DLV system [27,42]. Similar computa-
tional schemes are used by other answer set finding systems such as SMODELS
[118].

The first subsection illustrates a procedure for the computation of an answer
set of an A-Prolog program II. The second subsection describes how such a
procedure can be used for answering queries.

3.1 Computing an Answer Set

In this subsection, we describe a method for computing an answer set of a
program II which does not contain strong negation —. In the first step of the
computation an A-Prolog system replaces a program II, which normally con-
tains variables, by its ground instantiation ground(II). It is worthwhile noting
that ground(II) is not the full set of all syntactically constructible instances
of the rules of II; rather, it is an (often much smaller) subset of it having
precisely the same answer sets as II. The ability of the grounding procedure
to construct small ground instantiation of the program may dramatically af-
fect the performance of the entire system. As shown in [40], the adoption of
database rewriting techniques has proved to be very useful for reducing the
size of ground instantiation.

13



Once the variables have been eliminated from II, the hard part of the compu-
tation is then performed on IIj = ground(II).

Function ModelGenerator(I: Interpretation): Boolean;
var inconsistency: Boolean;
begin
I := DetCons(I);
if I = lit(o) then return false; (* inconsistency *)
if no atom is undefined in I then return IsAnswerSet(1);
else Select an undefined ground atom ! according to a heuristic;
if ModelGenerator(I U {l}) then returntrue;
else return ModelGenerator(I U {not l});
end;

Fig. 1. Computation of Answer Sets

The heart of the computation is performed by the Model Generator, which is
sketched in Figure 1. Roughly, the Model Generator produces some “candi-
date” answer sets of IIy. The stability of each of them is subsequently checked
by the function IsAnswerSet(I), which verifies whether the given “candidate”
I is a minimal model of the reduct II{ of I, relative to I. The function IsAn-
swerSet(I) returns true if the interpretation I at hand is an answer set and
false otherwise (see [60] for details on this function).

The ModelGenerator is first called with parameter I set to the empty inter-
pretation.3 If the program II has an answer set, then the function returns
true setting I to the computed answer set; otherwise it returns false. The
Model Generator is similar to the Davis-Putnam procedure employed by SAT
solvers. It first calls a function DetCons(), which returns the extension of I
with the literals that can be deterministically inferred from I (or the set of
all literals lit(c) upon inconsistency). This function (see [19,41] for details) is
similar to a unit propagation procedure employed by SAT solvers, but exploits
the peculiarities of A-Prolog for making further inferences (e.g., it exploits the
knowledge that every answer set is a minimal model and must be supported).
If DetCons does not detect any inconsistency, then an atom [ is selected ac-
cording to a heuristic criterion and ModelGenerator is (recursively) called on
T'U{l} and on I U{not [}, to explore whether I can be extended to an answer
set of II. If one of such calls succeeds, then the function stops returning true,
as an answer set of Il has been found. Upon failure of both such calls, the
function returns false, as I cannot be extended to any answer set.

It is worthwhile remarking the importance of the criterion for choosing the

3 An interpretation is a set of ground literals representing a 3-valued state of o ().
An atom [ can be true (I € I), false (not ! € I) or undefined w.r.t. to an interpreta-
tion I. During the computation, undefinedness is eliminated to eventually converge
to a 2-valued state.
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atom [. The atom [ plays the role of a branching variable of a SAT solver. And
indeed, like for SAT solvers, the selection of a “good” atom [ is crucial for the
performance of an A-Prolog system. The adopted heuristic is one of the major
differences between the existing A-Prolog systems, and often causes relevant
performance gaps between them. An experimental analysis of a number of
heuristics for A-Prolog systems can be found in [42].

3.2 Query Answering

The method for computing answer sets of A-Prolog programs without —, il-
lustrated in the previous section, can be used to implement both brave and
cautious reasoning with general A-Prolog programs.

Let L be a ground literal possibly preceded by the default negation not. By
II(L) we denote the program II with the addition of the following constraint:
(1) « I, if L = not I; (ii) < not [, if L = [. The answer sets of II(L) are exactly
the answer sets of II where L happens to be true.

Let II be an A-Prolog program (possibly containing —) and [ be a ground
literal. To answer the query [ on II, under brave and cautious entailments, one
can proceed as follows.

Brave Reasoning Build the positive form II({)* of II(/).* Evaluate pro-
gram II({)* as described in the previous subsection. If II({)* has an answer
set, then [ is a brave consequence of II (i.e., II |5, [); otherwise, it is not.

Cautious Reasoning Build the positive form II(not {)* and II(not 1)*
of M(not 1) and II(not 1), respectively. Evaluate programs Il(not )™ and
[I(not [)* as described in the previous subsection. If II(not [)* does not
have any answer set, then [ is a cautious consequence of II (i.e., I = ).
If II(not )* does not have any answer set, then [ is a cautious consequence of

11 (ie., I |= D).

4 A Simple Knowledge Base

To illustrate the basic methodology of representing knowledge in A-Prolog let
us consider the following example:

4 See Section 2.3 for the definition of positive form and for its properties.
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Example 4.1 Let cs be a small computer science department located in the
college of science, cos, of university, u. The department, described by the list
of its members and the catalog of its courses, is in the last stages of creating
its summer teaching schedule. In this example we outline a construction of a
simple A-Prolog knowledge base K containing information about the depart-
ment. For simplicity we assume an open-ended signature containing names,
courses, departments, etc.

The list and the catalog naturally correspond to collections of atoms, say:

member(sam, cs). member(bob, cs). member(tom, cs). "

course(java,cs). course(c,cs). course(ai, cs). course(logic, cs).

together with the closed world assumptions expressed by the rules:

—member (P, cs) < not member(P,cs). ®)

—course(C,cs) <« not course(C,cs)

The assumptions are justified by completeness of the corresponding informa-
tion. The preliminary schedule can be described by the list, say:

teaches(sam, java). teaches(bob,ai). (9)

Since the schedule is incomplete the use of CWA for teaches is not
appropriate. The corresponding program correctly answers no to query
'member(mary,cs) 7" and unknown to query 'teaches(mary,c) 7.

Let us now expand our knowledge base, K, by the statement: ‘Normally, com-
puter science courses are taught only by computer science professors. The logic
course is an exception to this rule. It may be taught by faculty from the math
department.” This is a typical default with a weak exception® which can be
represented in A-Prolog by the rules:
—teaches(P,C) < —member(P,cs),
course(C,cs),
not ab(d,(P,C)), (10)
not teaches(P,C).

ab(P, logic) < not =member (P, math).

> An exception to a default is called weak if it stops application of the default
without defeating its conclusion.
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Here d; (P, C) is the name of the default rule and ab(d; (P, C)) says that default
di1(P,C) is not applicable to the pair (P, C). The second rule above stops the
application of the default to any P who may be a math professor. Assuming
that

member(mary, math). (11)

is in K we have that K’s answer to query ‘teaches(mary,c) 7’ will become no
while the answer to query ‘teaches(mary,logic) 7’ will remain unknown. It
may be worth noting that, since our information about persons membership
in departments is complete, the second rule of 10 can be replaced by a simpler
rule

ab(P,logic) <— member(P, math). (12)

It is not difficult to show that the resulting programs have the same answer
sets. To complete our definition of teaches let us expand K by the rule which
says that 'Normally a class is taught by one person’. This can be easily done
by the rule:

—teaches(Py,C) < teaches(Ps, C),
P, # Py,
not ab(dx(C)),
not teaches(Py,C).

(13)

Now if we learn that logic is taught by Bob we will be able to conclude that
it is not taught by Mary.

The knowledge base K we constructed so far is elaboration tolerant with re-
spect to simple updates. We can easily modify the departments membership

lists and course catalogs. Our representation also allows strong exceptions to
defaults, e.g. statements like

teaches(john, at). (14)

which defeats the corresponding conclusion of default (10). As expected, strong
exceptions can be inserted in K without causing a contradiction.

Let us now switch our attention to defining the place of the department in the
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university. This can be done by expanding K by the rules

part(cs, cos).

part(cos,u).

part(E1, E2) <« part(El, E), (15)
part(E, E2).

—part(E1l, E2) < not part(E1, E2).

member(P, E1) < part(E2, E1),

(16)
member(P, E2).

The first two facts form a part of the hierarchy from the university organiza-
tional chart. The next rule expresses the transitivity of the part relation. The
last rule of (15) is the closed world assumption for part; it is justified only if
K contains a complete organizational chart of the university. If this is the case
then the closed world assumption for member can be also expanded by, say,
the rules:

—member(P,Y) < not member(P,Y). (17)

Let us now have a closer look at our program and see how theory of A-Prolog
allows us to discover some of its interesting properties. First let us show that
K has exactly one answer set, A.

Let K be the positive form of K. It is easy to see that it is locally stratified
and hence, by Theorem 2.1 has unique answer set, S*. By Proposition 2.1 we
conclude that there is no atom [ such that [, (=)* € S*. This implies that S
is consistent and hence, by Proposition 2.3 is the only answer set of K. This
fact, together with Proposition 2.1 allows us to show that K will (correctly)
entail that, say, sam is a member of the university, that « is not part of wu,
etc.

The answer set of K can be computed by the DLV system directly; some
minor modifications are needed to run X on Smodels to enforce “domain
restrictedness” (see [118]).

To check that sam is a member of the university we form a query

member(sam,u)? (18)
Asking DLV to answer member(sam,u)? on program K under cautious entail-
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ment,® we get precisely the response to our query. DLV also provides simple
means of displaying all the terms satisfying relations defined by a program
and so we can use it to list, say, all members of the CS faculty, etc.

Readers with some knowledge of Prolog undoubtedly noticed that K is not
suitable for the use with the Prolog interpreter. The program has a problem
with left recursion in rule (15). In addition, Prolog interpreter will flounder ’
on a large number of queries to K. Fortunately, floundering can be eliminated
by the use of type predicates. A standard left recursion elimination applied to
IC will replace recursive rules of (15) by

part of (E1, E2) <« part(E1l, E2).

part of (E1, E2) < part(El, E),
part of (E, E2).

—part_of (E1, E2) < not part_of(E1, E2).

(19)

Using various termination and soundness and completeness results for Prolog
type inference (see for instance [5], [6]) it is not difficult to show that if the
transitive closure of our part relation is irreflexive then Prolog interpreter
terminates and returns correct answer to queries formed by predicates part_of
and member

Let us now expand K by a new relation, of fered(C, D), defined by the fol-
lowing, self-explanatory, rules:
of fered(C,D) < course(C,D),
teaches(P,C).
—of fered(C, D) < course(C, D),
not of fered(C, D).

(20)

Suppose also that either Tom or Bob are scheduled to teach the class in logic.
A natural representation of this fact requires disjunction and can be expressed
as

teaches(tom, logic) or teaches(bob, logic). (21)

6 In practice, this is done by adding member(sam,u)? to the file containing the
program K, and running it on DLV with option -FC to specify that cautious en-
tailment is required.

" Prolog interpreter is said to flounder if during the execution it arrives at negative
query containing variables. In Prolog floundering constitutes a serious programming
error.
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[t is easy to see that the resulting program has two answer sets and that each
answer set contains of fered(logic,cs). The corresponding reasoning can be
done automatically by the DLV system. The example shows that A-Prolog
with disjunction allows a natural form of reasoning by cases - a mode of
reasoning not easily modeled by Reiter’s default logic.

[t is worth noting that this program is head-cycle free and therefore, by Theo-
rem 2.2 the disjunctive rule (21) can be replaced by two non-disjunctive rules,

teaches(tom, logic) < not teaches(bob, logic). (22)

teaches(bob, logic) <« not teaches(tom,logic).

and the resulting program will be equivalent to the original one. Now both,
Smodels and DLV can be used to reason about the resulting knowledge base.

It is important to notice that development of an executable program by a
series of transformation preserving the initial (possibly non-executable) spec-
ification is a standard programming methodology. The above example shows
how declarativeness of A-Prolog and development of new reasoning algorithms
allowed to shorten this transformation process and make programming easier.

Even though in the above example disjunction was eliminated by the simple
transformation the complexity results [29] show that it is not always possible.
Consider for instance the following example from [18].

Example 4.2 Suppose a holding owns some companies producing a set of
products. Each product is produced by at most two companies. We will use
a relation produced_by(P,Cy,Cy) which holds if a product P produced by
companies C; and C5. The holding below consists of four companies producing
four products and can be represented as follows:

produced_by(pl,b,s). produced_by(p2, f,b).

produced_by(p3,b,b). produced_by(p4, s, p).

This slightly artificial representation, which requires a company producing a
unique product to be repeated twice (as in the case of p3), is used to simplify
the presentation.

Suppose also that we are given a relation controlled_by(Cy,Cs, Cs,Cy) which
holds if companies C, (5, Cy control company C;. In our holding, b and s

control f, which is represented by controlled by(f,b,s, s)

Suppose now that the holding needs to sell some of the companies and that
its policy in such situations is to maintain ownership of so called strategic
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companies, i.e. companies belonging to a minimal (with respect to the set
theoretic inclusion) set S satisfying the following conditions:

(1) Companies from S produce all the products.
(2) S is closed under relation controlled_by, i.e. if companies Cy, C'3, Cy belong
to S then so is C}.

It is easy to see that for the holding above the set {b, s} is not strategic while
the set {b,s, f} is.

Suppose now that we would like to write a program which, given a holding
of the above form, computes sets of its strategic companies. In A-Prolog this
can be done as follows. Consider the rules

1. strat(Cy) or strat(Cs) + produced by(P,Cy, Cy)

2. strat(Cy) « controlled by(Cy,Cy,C3,Cly),
strat(Cs),
strat(Cs),
strat(Cy).

defining the relation strat(C) (C is strategic). Let II be a program consisting
of rules (1), (2) and an input database X of the type described above. The first
rule guarantees that, for every answer set A of II and every product p, there
is a company ¢ producing p such that an atom strat(c) € A. The second rule
ensures that for every answer set of II the set of atoms of the form strat(c)
belonging to this set is closed under the relation controlled_by. Minimality
of this set follows from the minimality condition in the definition of answer
set. It is not difficult to check that answer sets of II correspond one-to-one
to strategic sets of the holding described by an input database. The DLV
reasoning system can be asked to find an answer set of II and display atoms
of the form strat from it.

It is worthwhile noting that disjunction plays a crucial role in the above exam-
ple; it is essential to encode that problem. The program is not head-cycle free,
transforming disjunction to unstratified negation would alter the semantics of
the program. Moreover, we cannot design at all another A-Prolog program
encoding Strategic Companies without using disjunction. Indeed, since the
Strategic Companies problem is £’ -hard [18], while normal logic programs can
express “only” problems in NP (see Section 7), we can derive that Strategic
Companies cannot be expressed by a fixed normal logic program uniformly on
all collections of facts produced by(p,cl,c2) and controlled by(c,cl, c2,c3)
(unless NP = X%, an unlikely event) [18].
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5 Logic programming and other nonmonotonic formalisms

Even though some affinity between logic programs and nonmonotonic logics
was recognized rather early [112], [67], the intensive work investigating this
phenomena started around 1987 after the discovery of model theoretic se-
mantics for stratified logic programs [4]. Almost immediately after this notion
was introduced, stratified logic programs were mapped into the three major
nonmonotonic formalisms investigated at that time: circumscription [68],[107],
autoepistemic logic [48] and default theories [12], [78]. Further work in this
direction proved to be fruitful for logic programming as well as for artificial in-
telligence. The results uncovered deep similarities between various, seemingly
different, approaches to formalization of nonmonotonic reasoning and shed a
new light on the nature of rules and negation as failure operator of Prolog. One
of the results of this direction of research was the development of A-Prolog
and several other knowledge representation languages with non-monotonic se-
mantics. In this section, we will give some results establishing the relationship
between A-Prolog and two other nonmonotonic logics.

5.1 A-Prolog and Autoepistemic Logic

We will start with an autoepistemic logic [95] whose formulas are built from
propositional atoms using propositional connectives and the modal operator

B.

Definition 5.1 For any sets 7" and FE of autoepistemic formulas, F is said to
be a stable expansion of T iff E =Cn(T U{B¢:¢p € E} U{=By:¢ ¢ E})

where C'n is a propositional consequence operator. a

Intuitively, T" is a set of axioms and F is a possible collection reasoner’s beliefs
determined by 7. A formula F' is said to be true in T" if F' belongs to all stable
expansions of T'. If T does not contain the modal operator B, T has a unique
stable expansion [79]. We will denote this expansion by Th(T).

Let us now consider a class G of programs of A-Prolog which consists of rules
of the form:

(1) po < P1,--Pm, N0t Pri1,...,n0t p,

(17) —=p < notp  (for every atom p).
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where 0 < m < n. Let a be a mapping which maps rules (i) and (ii) into
autoepistemic formulas:

(2) pl/\/\pnz/\_'BpnhLl/\/\_'BanpO (24)
(i) =Bp D —p

and let
a(Il) = {a(r) : r € 11}

Proposition 5.1 For any program II € G, and any set A of literals in the
language of II, A is an answer set of IT iff Th(A) is a stable expansion of a(II).
Moreover, every stable expansion of a(Il) can be represented in the above
form. a

Mapping « is a simple generalization of the mapping from [48] where it was
shown that the declarative semantics of stratified logic programs can be char-
acterized in terms of the autoepistemic theory obtained by this transformation,
and that therefore, negation as failure can be understood as an epistemic op-
erator. The stronger result establishes a one-to-one correspondence between
the stable models of an arbitrary normal logic program II and the stable
expansions of a(II). There are other interesting mappings of programs of A-
Prolog into autoepistemic logic and its variants (see for instance [70], [80], [20],
[117]) Even though these results substantially increase our understanding of
the situation, none of the suggested mappings seem to provide a really good
explanation of meaning of or and < connectives of A-Prolog in terms of
autoepistemic logic.

5.2 A-Prolog and Reiter’s Default Theories

A Reiter’s default is an expression of the form

p:Mjg,...,M 3y,
; 23

where p, f and j’s are quantifier-free first-order formulas;® f is called the
consequent of the default, p is its prerequisite, and j’s are its justifications. An
expression M j is interpreted as “it is consistent to believe 5”. A pair (D, W)

8 We limit ourselves to the quantifier-free case. For an interesting discussion on
defaults with quantifiers see [69] and [59].
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where D is a set of defaults and W is a set of first-order sentences is called
Reiter’s default theory.

Definition 5.2 Let (D, W) be a default theory and E be a set of first-order
sentences. Consider Ey = W and, for « > 0, let D; be the set of defaults of
form (25) from D such that p € E; and —j; € E,...,—j, ¢ E. Finally, let
E;11 = Th(E;) U {conseq(d) : 6 € D;} where Th(E;) is the set of all classical
consequences of F; and conseq(d) denotes the §’s consequent. The set E is
called an eztension for (D, W) if

E=|E
0

Extensions of a default theory D play a role similar to that of stable expansions
of autoepistemic theories. The simple mapping « from programs of A-Prolog
without disjunction to default theories identifies a rule, r

lo < 1li,....Ly,not l,,1q1,...,n0t L,
with the default, a(r),

ll/\.../\lmIMl_m+1,...,Mln
lo

(26)

(recall that [ stands for the literal complementary to [).
Proposition 5.2 For any non-disjunctive program II of A-Prolog

(1) if S is an answer set of II, then T'h(S) is an extension of a(II);
(ii) for every extension E of a(II) there is exactly one answer set, S, of II such

that E = Th(S)

Thus, the class of non-disjunctive A-Prolog programs can be identified with
the class of default theories with empty W and defaults of the form (26). This
proposition from ([50]) is a simple extension of results from [12], and [78] where
the authors considered this relationship for normal logic programs. Perhaps
somewhat surprisingly, it is not easily generalized to program with disjunction.
One of the problems in finding a natural translation from arbitrary A-Prolog
programs to default theories is related to the inability to use defaults with
empty justifications in reasoning by cases: The default theory with
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does not have an extension containing p and therefore, does not entail p. The
corresponding logic program

P9

P

qorm.

has two answer sets, {p, ¢} and {p,r} and hence entails p.

6 A-Prolog and Negation in Logic Programs.

In this section we will briefly discuss the treatment of negation in logic pro-
gramming. Let us start with definite programs, i.e. programs consisting of the
rules

lo(—ll,...,lm (27)

where [’s are atoms. Traditionally, such programs were viewed as (complete)
definitions of objects and relations of the domain, and therefore, the lack
of information about, say, truth of p(a) was interpreter as evidence of its
falsity. This is a familiar closed world assumption which, theoretically, can be
formalized as an ’inference rule’ of the form

0 1

-l

(28)

or equivalently
[ ¢ My
=l

where Mp is the minimal Herbrand model of II. Of course the above state-
ments do not really qualify as inference rules. First, their premises are not
logical formulas, but the statements of the meta language. Second, since non-
provability for definite programs is undecidable it is not always possible to
determine if the rule is applicable or not. As a result a somewhat weaker ver-
sion of CWA was implemented in Prolog: —[ is derivable from II if the goal [
has a finitely failed SLD tree with respect to II. (For a definition of SLD trees
and other related concepts see [3] or [101]).

[ has a finitely failed SLD tree

-l

(29)

To better understand the difference between the two let us consider a program
II = {p < p}. It is easy to see that (28) entails =p while (29) does not.
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(The Prolog interpreter answering query p to II will go into an infinite loop.)
The difference can be used to divide the work on semantics of negation of
Prolog into two parts. One approach attempts to formalize systems based
on rule (28) and another is more interested in generalizations of rule (29).
For simplicity we limit our discussion to semantics of normal logic programs,
programs consisting of rules of the form

ly < 1ly,...,lL,not li1,...,n0t 1, (30)

where [’s are (not necessarily ground) atoms.
6.1 Clark’s completion

The research on finding a declarative semantics for the nlp negation started
with the pioneering work of Clark [30]. Given a nlp IT we can view the bodies of
rules with a predicate p in their heads as “sufficiency” conditions for inferring
p from the program. Clark suggested that the bodies of these rules can also
be taken as “necessary” conditions, with the result that negative information
about p can be assumed if all these conditions are not met. More precisely, let
us consider the following two step transformation of a nlp II into a collection
of first-order formula:

Step 1: Let r € II, head(r) = p(ti,...,t), and Yy, ..., Y, be the list of variable
appearing in r. By a;(r) we denote a formula:

Hm...ninztlA...AXk:tk/\ (31)

ANy NNy ANl Ao AL, D p(X, ., X))

where, X ... X}, are variables not appearing in r.
ai(IT) = {ay(r) : r € II}

Step 2: For each predicate p if
E1 D) p(Xl, e ,Xk)

Ej D) p(Xl, P ,Xk)
are all the implications in o (II) with p in their conclusions then replace these
formulas by

VXi...Xpp(Xq,..., Xp) =B V... VE;

J
if 7 > 1 and by
VXI...XkZ_lq(Xl,...,Xk)
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if j = 0.

Definition 6.1 The resulting first-order theory combined with free equality
azioms from [30] is called Clark’s completion of II and is denoted by Comp(II).
A literal [ is entailed by 11 if [ € Th(Comp(IL)).

The following theorem [4] establishes the relationship between models of
Clark’s completion of IT and the notion of supported model. (A set S of atoms is
supported by I if, for every | € S, there is a rule (30) such that ly,...,l,, € S
and lyi1,...,0, € S.)

Theorem 6.1 A set S of atoms is a model of Clark’s completion of 11 iff S
18 supported and closed under the rules of 11.

Models of Clark’s completion may obviously differ from answer sets of II. Pro-
gram p < p has two Clark’s models, { } and {p }, but only one answer set { }.
This shall not be surprising — the completion semantics intends to capture
the notion of finite failure of a particular inference mechanism, SLDNF reso-
lution, while answer sets semantics formalizes more general notion of default
negation. It is also important to note that the above theorem immediately
implies that every literal entailed by II with respect to the Clark’s semantics
is also entailed by II with respect to the answer set semantics.

The existence of Clark’s declarative semantics facilitated the development of
the theory of logic programs. It made possible first proofs of correctness of
inference mechanism based on SLDNF resolution, and of certain transforma-
tions of logic programs such as fold/unfold [121], proofs of equivalence and
other properties of programs. It is still widely and successfully used for logic
programming applications. Unfortunately in many situations the Clark’s se-
mantics appears too weak. Consider for instance the following example:

Example 6.1 Suppose that we are given a graph, say,
edge(a,b). edge(c,d). edge(d,c).

and want to describe vertices of the graph reachable from a given vertex a.
The natural solution seems to be to introduce the rules:

reachable(a).
reachable(X) + edge(Y, X),
reachable(Y').

We clearly expect vertices ¢ and d not to be reachable. However, Clark’s
completion of the predicate ‘reachable’ gives only

reachable(X) = (X =aV3Y : reachable(Y) A edge(Y, X))
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from which such a conclusion cannot be derived.

The difficulty was recognized as serious and prompted the development of
other logic programming semantics, including that of the A-Prolog. Even
though now there are comparatively few knowledge representation languages
which use Clark’s completion as the basis for their semantics the notion didn’t
loose its importance. As an illustration let us consider its use for computing
answer sets of logic programs. We will need the following terminology.

Definition 6.2 A nlp II is called tight if there is a level mapping || || of II
such that for every rule (30) of II

oIl > 112l - - (1] (32)

Theorem 6.2 IfII is tight then S is a model of Comp(Il) iff S is an answer
set of II.

The above theorem is due to F. Fages [43]. There are some recent results ex-
tending the notions of Clark’s completion and of tightness, and discovering
more general conditions for equivalence of the two semantics. Note that when-
ever the two semantics of Il are equivalent, II’s answer sets can be computed
by a satisfiability solver which, in some cases, can be more efficient than the
direct use of Smodels or DLV. More on this work can be found in [14].

6.2 Three-valued approaches

There were several important modifications of the Clark’s semantics which are
based on the use of three-valued logic. The first such modification [44,63,64],
aimed at capturing finite failure with respect to SLDNF resolution, uses three-
valued completion of a program. The following example illustrates the differ-
ence between two-valued and three valued completions:

Example 6.2 Consider program Ily:
p < not p.
q.

It is easy to see that COM P(Ily) is inconsistent while three valued completion
is consistent and has a unique model in which p is undefined and q is true.
This corresponds to the behavior of the SLDNF resolution which answers yes
to ¢ and goes into the loop on query p.

SLDNF resolution is sound with respect to the three valued completion. Un-
fortunately, it can be incomplete, but as shown in [26] the only sources of
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incompleteness are floundering and unfair selection of literals in the SLDNF
derivation. Since there are multiple sufficient conditions for avoiding flounder-
ing three-valued completion and SLDNF resolution seem to be a good match.

The well-founded semantics of [125] formalizes negation viewed as (a not nec-
essarily finite) failure. To give a precise definition we need the following ter-
minology.

For any nlp II, the function from sets of literals to sets of literals is defined by
the equation

Jn(X) = TT¥ (33)

where 1% is the reduct from definition 2.3 of answer set. It is clear that the
answer sets of II can be characterized as the fixpoints of yy. It is not difficult to
show that, if X C Y then yn(Y) C yn(X). This implies that the function &
is monotone and hence has the least fixpoint. Atoms belonging to this fixpoint
are called well-founded relative to II. Atoms belonging to the complement of
the greatest fixpoint of 43 are called unfounded relative to II.

Definition 6.3 A three-valued interpretation which assigns 1 (true) to atoms
well-founded relative to II, 0 (false) to atoms unfounded relative to II, and 1/2
(undefined) to all the remaining atoms is called the well-founded model of II.
A literal [ is a well-founded consequence of II if it is true in II’s well-founded
model.

From the above definition one can easily see that every nlp has the well-
founded model and that every well-founded consequence of II is also II’s con-
sequence with respect to the stable model semantics. To better understand
the difference between the semantics let us look at several examples.

Example 6.3 Consider the program Iy from Example 6.2. It has no stable
model (and hence Ily’s set of stable consequences consists of {p, —p, ¢, —¢}). In
contrast, the only well-founded consequence of Il is ¢. The set of unfounded
atoms is empty and the only undefined atom is p.

Example 6.4 Consider the following program Il :

p < not a.
p < not b.
a < not b.

b «— not a.
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I1;¢ has two stable models {p,a} and {p, b}. The well-founded model of II;, has
empty sets of well-founded and unfounded atoms. Therefore, p is a consequence
of I3 in the stable model semantics, while the answer to p in the well-founded
semantics is undefined. a

Finally, let us look at the following example from [25]:

Example 6.5 Consider II;; consisting of rules:

a < not b.
b < c,not a.

C < a.

This program has one answer set {a, c}, and so has a and ¢ as its consequences.
The well-founded model of II;; has no well-founded atoms. Its unfounded
atoms are {a, b, c} and hence, according to the well-founded semantics, atoms
a,b, and ¢ are undefined.

There are large classes of programs for which both, well-founded and stable
model, semantics coincide. (See for instance [109], [13]). The SLDNF resolution
is sound with respect to the well-founded semantics but it is not complete.
Several attempts were made to define variants of SLDNF resolution which
compute answers to goals according to the well-founded entailment. One in-
teresting approach, SLS resolution, can be found in [108], [113]. SLS resolution
is based on a type of an oracle and cannot therefore be viewed as an algorithm.
There are however several algorithms and systems which can be viewed as SLS
based approximations of the well-founded semantics [21], [15] One of the most
powerful such systems, XSB (www.cs.sunysb.edu/ sbprolog/xsb-page.html)
expands SLDNF with tabling and loop checking. Its use allows to avoid many
of the loop related problems of Prolog. For instance, XSB’s answer to query
reachable(c) for program from Example 6.1 will be no (the Prolog interpreters
will loop on this query).

7 Computational Complexity

In this section we will give a short overview of results on the computational
complexity of A-Prolog programs.
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7.1 Motivations

One may wonder why we should be interested in analyzing the complexity of A-
Prolog. This question has been addressed very clearly by Gottlob in [53], who
pointed out that there are three main reasons, why one should be interested
in studying the (worst case) complexity of logic programming formalisms. We
report these reasons below.

First, the worst case complexity is a very good indicator of how many sources
of structural complexity are inherent in a problem. For example, if a problem
is NP-complete, then it contains basically one source of intractability, related
to a choice to be made among exponentially many candidates. If a problem
is ©F'-complete then there are usually two intermingled sources of complexity.
For instance, the problem of checking whether an A-Prolog program has an
answer set is X2'-complete. The two sources of complexity are (1) the choice
of a suitable interpretation which is a model of the reduct of the program and
(2) the proof that this model is minimal.

Secondly, once the sources of complexity are identified, one can develop smart
algorithms that take these sources into account. In addition, it becomes eas-
ier to discover tractable (i.e., polynomial) sub-cases by considering syntactic
restrictions that eliminate all sources of intractability.

Finally, a precise complexity classification gives us valuable information about
the algorithmic similarity and inter-translatability of different problems. For
instance, both brave reasoning on normal (or-free) A-Prolog programs and
brave reasoning on head-cycle free A-Prolog programs are NP-complete (see
Table 2). Therefore, there are simple (i.e., polynomial) translations between
these two reasoning tasks. In particular, this means that if one has imple-
mented a reasoning engine (theorem prover) for one of these formalisms, this
system can easily be adapted to become a reasoning engine for the other for-
malism. In most cases, the translations between two decision problems that
are complete for the same complexity class can easily be deduced from the
respective completeness proofs. At least, the underlying intuitions in these
proofs may help to find a suitable translation scheme. On the other hand, if
it is known that two problems are complete for different complexity classes in
the polynomial hierarchy, the existence of a polynomial translation from the
harder to the easier problem is unlikely. For example, brave reasoning with
normal (non-disjunctive) A-Prolog programs is NP-complete (see Table 2).
Therefore, unless the polynomial hierarchy collapses, a polynomial translation
from full A-Prolog programs to normal programs cannot exist.

In summary, the complexity analysis of a problem gives us much more than
merely a quantitative statement about its tractability or intractability in the
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worst case. Rather, locating a problem at the right level in the polynomial
hierarchy gives us a deep qualitative knowledge about this problem. Moreover,
the complexity analysis is a precious tools to develop efficient implementa-
tions of A-Prolog systems. For instance, consider the problem of checking
whether a given set of literals is an answer set or not. This problem is co-NP-
complete for general A-Prolog programs; while it is polynomial for head-cycle
free programs (see Table 1). Consequently, a smart implementation of function
IsAnswerSet() (see Figure 1) should be able to efficiently check this property
if the program is head-cycle free. Indeed, in the A-Prolog system DLV, the
function devoted to answer set checking recognizes whether the input program
is head-cycle free or not. An efficient polynomial-time method is then applied
on head-cycle free programs; while a backtracking procedure is employed on
general (non head-cycle free) A-Prolog programs. Similar considerations ap-
ply also to other syntactic fragments having lower complexity than the general
case. For instance, reasoning on normal (disjunction free) stratified programs
should be performed by a polynomial time procedure (see Table 3) by an
efficient A-Prolog system.

7.2 Preliminaries on Complexity: The Polynomual Hierarchy

We assume that the reader has some aquaintance with the concepts of NP-
completeness and complexity theory, the book [103] is an excellent source for
deepening the knowledge in this field.

The classes ©F, and IIY of the Polynomial Hierarchy (PH) (cf. [119]) are
defined as follows:

P
k

S5 =1f =P and for all k > 1,5F = NP¥—1 TIf' = co-ZF.

In particular, NP = ¥ and co-NP = IIT. NP denotes the class of problems
that are solvable in polynomial time on a nondeterministic Turing machine
with an oracle for any problem 7 in the class C.

The oracle replies to a query in unit time, and thus, roughly speaking, models
a call to a subroutine for 7 that is evaluated in unit time. If C' has complete
problems, then instances of any problem 7’ in C' can be solved in polynomial
time using an oracle for any C-complete problem 7, by transforming them
into instances of 7; we refer to this by stating that an oracle for C' is used.
Notice that all classes C considered here have complete problems.

Observe that for all k£ > 1,

¥y C Ti., C PSPACE; and Iy C T}, C PSPACE;
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each inclusion is widely conjectured to be strict. Note that, by the rightmost
inclusions, all these classes contain only problems that are solvable in polyno-
mial space. They allow, however, a finer grained distinction between NP-hard
problems that are in PSPACE.

7.8 Main Problems Considered

We study the complexity of the following three important decision problems
arising in A-Prolog:

Answer Set Checking. Given an A-Prolog program II, and a set M of
ground literals as input, decide whether M is an answer set of 1I.

Brave reasoning. Given an A-Prolog program II, and a ground literal [,
decide whether [ is true in some answer sets of II (i.e., IT =3 ).

Cautious reasoning. Given an A-Prolog program II, and a ground literal
[, decide whether [ is true in all answer sets of II (i.e., II = 1).

7.4 Complexity Results

We analyze the computational complexity of the three decision problems men-
tioned above for ground (i.e., propositional) A-Prolog programs. An interest-
ing issue is the impact of syntactical restrictions on the logic program II. In
particular, comparing the power of disjunction with the power of negation is
intriguing [29].

Starting from normal positive programs (without negation and disjunction),
we consider the effect of allowing the (combined) use of the following con-
structs:

strong negation

stratified (nonmonotonic) negation
arbitrary negation

head-cycle free disjunction
arbitrary disjunction ( or)

The complexity results for Answer Set Checking, Brave Reasoning and Cau-
tious Reasoning over A-Prolog programs are summarized in Table 1, Table 2,
and Table 3, respectively. Therein, each column refers to a specific form of
negation, namely: {} = no negation, = = strong negation, not , = stratified
negation, not = unrestricted (possibly unstratified) negation. The lines of
the tables specify the allowance of disjunction;in particular, {} = no disjunc-
tion, or, = head-cycle free disjunction, or = unrestricted (possibly not
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{} {=} | {nots} | {—,not s} | {not } | {—,not }

{} P P P P P P
{orn} || P P P P P P

{or} || co-NP | co-NP | co-NP co-NP co-NP co-NP

Table 1
The Complexity of Answer Set Checking in Syntactic Fragments of A-Prolog

{3} | {~} | {not s} | {-,not s} | {not } | {=,not }

{ P | P P P NP NP
{orny} || NP | NP | NP NP NP NP
{or} |27 |27 | 2F 7 57 7

Table 2
The Complexity of Brave Reasoning in Syntactic Fragments of A-Prolog

head-cycle free) disjunction. Each entry of the table provides the complex-
ity class of the corresponding fragment of the language. For an instance, the
entry ({ or ,},{not ,}) defines the fragment of A-Prolog allowing head-cycle
free disjunction and stratified negation. The corresponding entry in Table 2,
namely NP, expresses that brave reasoning for this fragment is NP-complete.
The results reported in the tables represent completeness under logspace re-
ductions, they are taken from [29,53,36,35].

As expected, the results for brave and cautious reasoning are symmetric in
most cases, that is, whenever the complexity of a fragment is C' under brave
reasoning, its complexity is co-C under cautious reasoning (recall that co-

P =P).

Strong negation does not affect at all the complexity of reasoning; each column
containing strong negation is equal to the corresponding column without it.
Limiting the forms of disjunction and nonmonotonic negation reduces the re-
spective powers. For disjunction free programs, brave reasoning is polynomial
on stratified negation, while it becomes NP-complete if we allow unrestricted
(nonmonotonic) negation. Brave reasoning is NP-complete on head-cycle free

{} {-} {not s} | {-,not s} | {not } | {—,not }
{} P P P P co-NP co-NP
{orn} | co-NP co-NP co-NP co-NP co-NP co-NP
{or} || co-NP? | co-NP? INEY INE g g
Table 3

The Complexity of Cautious Reasoning in Syntactic Fragments of A-Prolog
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programs even if no form of negation is allowed. The complexity jumps one
level higher in the polynomial hierarchy, up to ¥¥'-complexity, if full disjunc-
tion is allowed. Thus, disjunction seems to be harder than negation, since the
full complexity is reached already on positive programs, even without any kind
of negation.

The picture is a bit different for cautious reasoning. Full disjunction alone
is not sufficient to get the full complexity of cautious reasoning on A-Prolog
(1), which remains in co-NP if default negation is disallowed. Intuitively, to
disprove that a literal [ is a cautious conference of a program II, it is sufficient
to find a model (which does not need to be an answer set or a minimal model)
which does not contain [. Indeed, for not-free programs, the existence of such
a model guarantees that there exists also an answer set of II which does not
contain [. Therefore, under cautious inference, positive programs are easier to
evaluate than programs with default negation; while, this is not true under
brave inference modality.

The complexity results for Answer Set Checking, reported in Table 1, help us
to understand the complexity of reasoning. Whenever Answer Set Checking
is co-NP-complete for a fragment F', then the complexity of brave reasoning
jumps up to the second level of the polynomial hierarchy (to ©f). Indeed,
brave reasoning on full A-Prolog suffers of two “orthogonal” sources of com-
plexity: (i) the exponential number of answer set “candidates”, and (ii) the
difficulty of checking whether a candidate M is an answer set (the minimal-
ity of M can be disproved by an exponential number of subsets of M). Now,
disjunction (unrestricted or even head-cycle free) or unrestricted negation pre-
serve the existence of source (i); while source (ii) exists only if full disjunction
is allowed (see Table 1). As a consequence, reasoning lies at the second level
of the polynomial hierarchy (X1) for the A-Prolog fragments where both such
complexity sources are present; while, it goes down to the first level of PH if
only source (i) is present (unrestricted negation, or head-cycle free disjunc-
tion), falling down to level zero (P) if both sources are eliminated.

8 Further Program’s Properties

In previous sections we already discussed some properties of logic programs,
such as syntactic conditions guaranteeing existence and uniqueness of answer
sets, the relationship between entailment under different semantics, soundness

9 Note that here we consider the complexity of deciding if IT = L, where L is either
an atom or an atom negated by strong negation. Deciding if II = not L, i.e., if

there is an answer set which does not contain L, is harder, precisely, this problem
is T1¥-complete [35].
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and completeness properties of various inference systems and algorithms, etc.
In this section we’d like to briefly comment on some results establishing general
properties of logic programming entailment relations.

Let us consider an A-Prolog program II;; from example 6.5. Its answer set is
{a,c} and hence both a and ¢ are the consequences of II;;. When augmented
with the fact ¢ the program gains a second answer set {b, c}, and loses conse-
quence a. The example demonstrates that the answer set entailment relation
does not satisfy property:

OEa IIED
MU {a) b (34)

called cautious monotonicity. The absence of cautious monotonicity is an un-
pleasant property of the answer set entailment. Among other things it pro-
hibits the development of general inference algorithms for A-Prolog in which
already proven lemmas are simply added to the program. We will say that a
class of programs is cautiously monotonic if programs from this class satisfy
condition 34. To give an example of such a class let us consider a syntactic
condition on programs known as order-consistency [114].

Definition 8.1 For any nlp II and atom a, [T} and TI, are the smallest sets
of atoms such that a € II] and, for every rule r € II,

o if head(r) € II} then pos(r) C II} and neg(r) C II,
o if head(r) € II, then pos(r) C II, and neg(r) C IIF,

Intuitively, IT; is the set of atoms on which atom a depends positively in IT, and
II; is the set of atoms on which atom a depends negatively on II. A program
IT is order-consistent if there is a level mapping || || such that ||b]| < ||all
whenever b € IIT N1II,. That is, if a depends both positively and negatively
on b, then b is mapped to a lower stratum. It is easy to see that program II;
from example 6.4 is order-consistent, while program II; from example 6.5 is

not. The following important theorem is due to H. Turner [123]

Theorem 8.1 If II is an order-consistent program and atom a belongs to
every answer set of I, then every answer set of ITU {a.} is an answer set of II.

This immediately implies condition 34 for order-consistent programs.

A much simpler observation guarantees that all nlp’s under the answer set
semantics have so called cut property: If an atom a belongs to an answer set
X of II, then X is an answer set of IIU {a.}.

Both results used together imply another nice property, called cummulativ-
ity: augmenting a program with one of its consequences does not alter its
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consequences. More precisely,

Theorem 8.2 If an atom a belongs to every answer set of an order-consistent
program II, then IT and ITU {a.} have the same answer sets.

Semantic properties such as cummulativity, cut, and cautious monotonicity
were originally formulated for analysis of nonmonotonic consequence relations
([46], [65]). Makinson’s [75] handbook article includes a survey of such prop-
erties for nonmonotonic logics used in Al

9 Conclusion

In this paper we described several important themes related to research on
logic programming and knowledge representation in A-Prolog. The papers
in this volume expand on these foundations. They are selected from those
presented at LPNMRY9 — 5th International Conference on Logic Programming
and Non-monotonic Reasoning, held in 1999 in El Paso, Texas. These papers
are significant extensions of the respective versions presented at the conference.

Paper [72] illustrates the application of the declarative programming method-
ology of A-Prolog to the planning domain. The work in [54] addresses some
important fixed-parameter complexity questions in artificial intelligence and
nonmonotonic reasoning. Article [2] deals with the issue of updates in logic
programming, introducing a language, called LUPS, for specifying dynamic
changes in knowledge bases. Paper [31] reports on the successful application
of the paradigm preference logic grammars to the problem of data standard-
ization. Paper [76] defines an “annotated” version of the revision programs of
Marek and Truszczynski. While revision programs are used to update, essen-
tially, classical propositional interpretations (complete databases), annotated
revision programs are more powerful allowing one to update the general “T-
valuations”. Finally, paper [118] describes an interesting linguistic extension
of A-Prolog, which allows us to express cardinality constraints and weight con-
straints more naturally; it also illustrates one of the most popular A-Prolog

systems, SMODELS.

There is a number of other logical languages and reasoning methods which can
be viewed as alternatives to A-Prolog. They were developed in approximately
the same time frame as A-Prolog, share the same roots and a number of basic
ideas. The relationship and mutual fertilization between these approaches is

a fascinated subject which was not addressed here. For more information the
interested reader can look at [1,16,57,21,24,127].
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