
Vicious Circle Principle and Formation of Sets
in ASP Based Languages

Michael Gelfond and Yuanlin Zhang

Oct, 2016

Michael Gelfond and Yuanlin Zhang ASPOCP2016 New York



The Background: G. Cantor

The story starts with introduction of sets by G. Cantor:

“A set is a Multiplicity (Many) that allows itself to be
thought of as a Unity (One).”

The efforts to better understand when a Multiplicity
gives itself such a permission are still ongoing.

Michael Gelfond and Yuanlin Zhang ASPOCP2016 New York



The Background: H. Poincare and B. Russel

One line of research aimed at answering this question is
based on Vicious Circle Principle:

“No object or property may be introduced by a definition
that depends on that object or property itself”.

This, of course, reduces the problem to the definition of
dependency.

The first attempt to formalize this notion is due to B.
Russel.

Michael Gelfond and Yuanlin Zhang ASPOCP2016 New York



The Background: S. Feferman

One such recent definition, due to S. Feferman, was
formalized in system W (named after H. Weyl).

It is known that some mathematical results cannot be
carried out in this system.

Feferman’s hypothesis: all of scientifically applicable
analysis can be developed in the system W. (So far, all
evidence is in its favor, 2004).

Michael Gelfond and Yuanlin Zhang ASPOCP2016 New York



Sets in ASP

In ASP, sets appeared mainly as parameters of
aggregates - functions on finite sets.
Non-recursive use of aggregates in ASP rules, e.g.

need_TA(C)← card{X : enrolled(X,C)} > 20

seem to have clear meaning.
But, despite the absence of infinity, the problem of
self-reference reappears in the context of logic programs
with recursion through aggregates.

There are substantial differences of opinion which have
been a subject of research for a long time.

Michael Gelfond and Yuanlin Zhang ASPOCP2016 New York



Clash of Intuitions

• According to Flog (Faber, Leone, Pfeifer, 2004),
program

p(1)← p(0)

p(0)← p(1)

p(1)← card{X : p(X)} 6= 1

has answer set {p(0), p(1)}.

• According to Slog (Son and Pontelli, 2007) the
program is inconsistent.

Michael Gelfond and Yuanlin Zhang ASPOCP2016 New York



Alog

The differences between semantics are normally
analyzed in terms of means employed to establish
correctness of properties of aggregates.

A new language, Alog (Gelfond, Zhang, 2014), shifts
attention from properties of aggregates to existence of
their parameters.

A set expression {X : p(X)} of Alog denotes the set of all
objects believed by the rational agent associated with the
program to satisfy property p.

To avoid self-supportedness of beliefs, Alog introduces a
new form of VCP incorporated in its semantics.

Michael Gelfond and Yuanlin Zhang ASPOCP2016 New York



VCP in Alog:

The reasoner’s belief in p(t) can not depend on
existence of a set denoted by set expression {X : p(X)},

or, equivalently

{X : p(X)} denotes a set S only if for every t rational
belief in p(t) can be established without a reference to S .

Michael Gelfond and Yuanlin Zhang ASPOCP2016 New York



Recursion through aggregates without VCP

The following is a simple example of a rule which allows
recursion through aggregates but avoids vicious circles:

val(W,0) ← gate(G,and),

output(W,G),

card{W : val(W,0), input(W,G)} > 0.

Here val(W,S) holds iff the digital signal on a wire W
has value S.
The rule avoids vicious circle since one needs to only
construct a particular subset of input wires of G. Since,
due to absence of feedback in our circuit, W can not
belong to the latter set our definition is reasonable.

Michael Gelfond and Yuanlin Zhang ASPOCP2016 New York



Alog and Other Languages

All the known semantics including that of Alog coincide
on programs stratified with respect to aggregates.

Moreover, an answer set of Alog is also an answer set of
Flog, Slog and other languages.

In general, however, Alog semantics is more restrictive
and views more programs as inconsistent. This includes
known examples such as Companies Control, etc.

Michael Gelfond and Yuanlin Zhang ASPOCP2016 New York



Examples

• Program P1:

p(1)← p(0). p(0)← p(1).

p(1)← card{X : p(X)} 6= 1.

is inconsistent in Alog and Slog.

• Program P2:

p(1)← card{X : p(X)} ≥ 0.

is consistent in Flog and Slog but inconsistent in Alog.

• Program P3:

p(1)← card{X : p(X)} = Y, Y ≥ 0.

which seems to express the same thought as P2, is
inconsistent in all three languages.

Michael Gelfond and Yuanlin Zhang ASPOCP2016 New York



Examples

An argument in favor of consistency of

p(1)← card{X : p(X)} ≥ 0.

says that the premise is true for any set and hence the
program is equivalent to

p(1).

But, this is true only if there is a set denoted by
{X : p(X)}, i.e. belief in p(1) can be justified by P2 only if
one assumes existence of such set and hence existence
of an answer set of the program.

Michael Gelfond and Yuanlin Zhang ASPOCP2016 New York



Answer Sets of Alog

Definition (Aggregate Reduct)

The aggregate reduct of a ground program Π of Alog w.r.t. a
set of ground regular literals S is obtained from Π by

1 removing from Π all rules containing aggregate atoms false
in S.

2 replacing every remaining aggregate atom f{X : p(X)}� n
by the set {p(t) : p(t) ∈ S}

Definition (Answer Set)

A set S of ground regular literals over the signature of a ground
program Π of Alog is an answer set of Π if it is an answer set
of an aggregate reduct of Π with respect to S.

Michael Gelfond and Yuanlin Zhang ASPOCP2016 New York



An Example

Consider a program, consisting of a rule

p(a)← card{X : p(X)} = 1.

It has two candidate answer sets, S1 = { } and S2 = {p(a)}.
The aggregate reduct of the program with respect to S1
is the empty program. Hence, S1 is an answer set of P1.
The program’s aggregate reduct with respect to S2
however is

p(a)← p(a).

The answer set of this reduct is empty and hence S1 is
the only answer of P1.

Michael Gelfond and Yuanlin Zhang ASPOCP2016 New York



Beyond Original Alog

In a recent paper original Alog was expanded to

Allow aggregates on infinite sets.

Expand the language by several other useful set
related constructs.

Prove some basic properties of the new language.

Michael Gelfond and Yuanlin Zhang ASPOCP2016 New York



Set Atoms in the Bodies of Rules

Problem: given complete lists of required courses and
courses taken by a student define when the student is
ready to graduate.

A natural definition of this relation

ready_to_graduate(S)← {C : required(C)} ⊆ {C : taken(S,C)}.

¬ready_to_graduate(S)← not ready_to_graduate(S).

contains a rule with set atoms and subset relation in
the body.

We were not able to find a better way of defining
ready_to_graduate.

How to mathematically define semantics of such rules?

Michael Gelfond and Yuanlin Zhang ASPOCP2016 New York



A Difficulty:

Consider a program Π:

p(a)← {X : p(X)} ⊆ {X : q(X)}.

q(a).

Intuitively, it has two possible candidate answer sets:
A1 = {q(a)} and A2 = {q(a), p(a)}.

A1 does not satisfy the first rule and, hence, is not an
answer set. But what about A2?

If VCP is accepted then A2 is not an answer set.

If only minimality is required then it is.

Michael Gelfond and Yuanlin Zhang ASPOCP2016 New York



Answer Sets of Alog

Definition (Set Reduct )

The set reduct of Π w.r.t. a set of ground regular literals A is
obtained from Π by

1 removing rules containing set atoms which are false or
undefined in A.

2 replacing every set name {X : p(X)} by {p(t) : p(t) ∈ A} and
removing set atoms.

The set reduct of

q(a). p(a)← {X : p(X)} ⊆ {X : q(X)}.

with respect to A2 = {q(a), p(a)} is

q(a). p(a)← p(a), q(a).

Michael Gelfond and Yuanlin Zhang ASPOCP2016 New York



Answer Sets of Alog

Alog expands original ASP by allowing:

• rules with infinite heads and bodies,

• rules with set atoms.

No change in semantics is needed to accomodate
infinite rules. Set atoms are dealt with as follows:

Definition (Answer Set)

A set A of ground regular literals over the signature of a ground
Alog program Π is an answer set of Π if A is an answer set of
the set reduct of Π with respect to A.

Michael Gelfond and Yuanlin Zhang ASPOCP2016 New York



Set Introduction

New Alog uses rules with set atoms in the heads to
express statements of the form: Let P be a subset
(superset) of a set Q.

A program
q(a).

p ⊆ {X : q(X)}.

has answer sets A1 = {q(a)} where the set p is empty and
A2 = {q(a), p(a)} where p = {a}.

The construct may be used in ways similar to the choice
rule of Clingo but has simpler informal and formal
semantics.

Michael Gelfond and Yuanlin Zhang ASPOCP2016 New York



Discussion

This is a work on language design and, as such, has
been guided by some general design principles, e.g.

The constructs of a language should be close to
those used in practice and have a simple syntax and
a clear intuitive semantics based on understandable
informal principles.

A language should be elaboration tolerant i.e. it
should be possible to add new constructs without
substantial changes in its syntax and semantics.

We believe that, in this respect, Alog is a success. Since
our emphasis is on teaching some loss of expressive
power is tolerable. It remains to be seen if more
powerful extensions are needed in programming
practice.

Michael Gelfond and Yuanlin Zhang ASPOCP2016 New York



Beyond Alog

We made an attempt to expand Alog by weakening
VCP incorporated in its semantics, as follows:
Let C be an atom containing a set name {X : p(X)}. Then
belief in p(t) must be established without reference to
the truth of C in A unless this truth can be
demonstrated without reference to p(t).

To our surprise the resulting language turned out to be
basically equivalent to Slog, and hence replacement of
f{X : p((X)} ≥ 0 by f{X : p((X)} = Y, Y ≥ 0 does not preserve
the program’s semantics. So paradoxes persist.

Michael Gelfond and Yuanlin Zhang ASPOCP2016 New York



Remaining Problems

I’ll only mention two:

Check if a different form of VCP can lead to a
richer language without paradoxes.

A good language should have a type system, total
and partial functions, and a decent implementation.
Ingredients are available but integration and
implementation is a non-trivial task.

THANKS!

Michael Gelfond and Yuanlin Zhang ASPOCP2016 New York



Appendix: more on ready_to_graduate

The relation can be defined without set atoms, i.e.

−ready_to_graduate(S)← required(C), not taken(S,C).

ready_to_graduate(S)← not ¬ready_to_graduate(S).

However, this program is more difficult to update. For
instance, addition of rule

ready_to_graduate(S) : −special_permission(S).

leads to inconsistency.

Additional difficulties appear when the list of classes
taken by s is incomplete, or when system is dynamic
and the rules can interfere with the inertia axiom.

Michael Gelfond and Yuanlin Zhang ASPOCP2016 New York



Positive Ground Program Π

Normal form: All occurrences of f{X : p(X)} = Y, cond(Y)

are replaced by cond(f{X : p(X)}).

An instantiation of condition C = {X : p(X)}� k with
respect to set S of ground literals is the set {t : p(t) ∈ S}.

A subset-minimal set of ground atoms satisfying the
rules of Π is called a candidate answer set of Π.

A is an answer set of Π if

A is a candidate answer set of Π, and

for every p(t) ∈ A, p(t) belongs to every? candidate
answer set of the result of replacing C = {X : p(X)} by
their instantiation with respect to A \ {p(t)}.
CHECK!

Michael Gelfond and Yuanlin Zhang ASPOCP2016 New York


