Knowledge Representation and Logic

Programming

Michael Gelfond
University of Texas at El Paso
mgelfond@cs.utep.edu

University of Texas at El Paso Knowledge Representation Group

Plan of the talk

e Introduction.

e A-Prolog, syntax and semantics.

e Representing defaults.

e Incompleteness of information in databases.
e Inheritance reasoning.

e Reasoning with prioritized defaults.

e Agents is dynamic domains.

University of Texas at El Paso Knowledge Representation Group

Introduction

e To make machines smart we need to teach

them how to reason and how to learn.
Most teaching is done by instructions.
Most learning comes from instructions.

We need efficient means of communication!

e Languages differ according to the type of in-
formation their designers want to communi-

cate to computers. Two basic types:

ALGORITHMIC languages describe sequences

of actions for a computer to perform.

DECLARATIVE languages describe properties

of objects in a given domain.

University of Texas at El Paso Knowledge Representation Group

Logic based AIl: the idea

e Use declarative language to describe the do-

main.

e Express various tasks as queries to the re-

sulting program.

e Use inference engine, i.e. a collection of rea-

soning algorithms, to answer these queries.

University of Texas at El Paso Knowledge Representation Group

Representing Knowledge: the basics

e Knowledge represented as a theory (a collection of state-

ments) in a formal language with a consequence relation.

Such theory is often called KNOWLEDGE BASE (KB).

e Representation should be ELABORATION TOLER-
ANT, i.e. small additions to the informal body of knowl-

edge should correspond to small additions to the formal

KB.
e Consequence relation should be NONMONOTONIC.

e Query answering systems should be able to answer

queries to a knowledge base.

Choice of the language and of the consequence relation
depends on the types of statements used in the informal

description.

University of Texas at El Paso

Knowledge Representation Group

Statements to represent

e Defaults: A’s are normally B’s.

These statements are understood as communication agree-
ments: given = of the type A one should conclude that
x satisfies property B unless he has evidence to the con-

trary.

e Statements expressing lack of information: “Don’t know

if statement P is true or false.”

e Naming assumptions: “There are no unnamed elements

in the domain”.

e Completeness of information: “Statements not entailed

by the knowledge base are false”.

University of Texas at El Paso Knowledge Representation Group

Reasoning about defaults: the

beginning

¢ Extensions of Classical Logic (1980):

Circumscription (McCarthy), Default Logic (Re-
iter), Nonmonotonic Logic (McDermott and

Doyle), Autoepistemic Logic (Moore)

Complex languages and consequence relations,

no inference engines, (ADA of AI)
e Logic Programming with Negation as Failure

Normally, comparatively simple to use, good

inference engine, but

NO DECLARATIVE SEMANTICS, NOT
ENOUGH EXPRESSIVE POWER

University of Texas at El Paso Knowledge Representation Group

Declarative semantics for NOT

e NOT is defined via Prolog interpreter (Colmer-
auer, 1974).

e First semantics (Clark, Reiter 1978). Great

work, not fully adequate.

e Canonical model (Apt, Blair and Walker,
1985). Definitive semantics, but defined only

for a special class of programs.

e Stable Model Semantics (Gelfond and Lifs-
chitz, 1987), (based on work in nonmonotonic
logic), Well-founded Semantics (Van Gelder,
Ross, Schlipf)

University of Texas at El Paso Knowledge Representation Group

Extensions of the language

¢ Classical (explicit) negation (Gelfond and Lif-
schitz 1990, Pereira, 1993), disjunction (Minker
and Lobo, Gelfond and Lifschitz, Przymusin-
ski, etc).

e New knowledge representation language

A-Prolog.

The language includes“classical” negation — (—p
means that p is false), negation as failure not

and “epistemic” or.

A-Prolog allows to represent incomplete infor-

mation. Very expressive. Unlike Prolog, a

query is answered YES, NO, or UNKNOWN.

University of Texas at El Paso Knowledge Representation Group

10

A-Prolog

e A program of A-Prolog is a collection of rules of the

form

foor ...or f; < fiz1,--., fm, not fri1,..., not f,

where f’s are literals, i.e., statements of the form p(t), =p(t).
The rule says to a reasoner “If you believe in f;11... fm
and have no reason to believe in f,,.1... f, then you

must believe at least one of fy... f;”.

e Intuitively, declarative program II can be viewed as
formal specification for sets of beliefs which can be held

by a rational reasoner on the bases of II.

e These beliefs are represented by sets of ground literals

called answer sets of II.

e Formula f is entailed by a program II if f is satisfied

by all answer sets of II.

University of Texas at El Paso Knowledge Representation Group

11

Answer sets for monotonic programs

Consider a program consisting of rules

Joor ...or fi fri1,.oo, fm

A set S of formulae is closed under a rule if it satisfies its

head or does not satisfy its body.

Answer set of a program II not containing not is a
minimal set S of ground literals satisfying the following

two conditions:
e S is closed under the rules of II.

e If S contains contrary literals then it is equal to the set

of all ground literals (Lit).

University of Texas at El Paso Knowledge Representation Group

12

Examples

® p(a) < —p(b). —p(a).
A= {-pla)}
® p(b) < —p(a). —p(a).

A ={-p(a),p(b)}

o p(b) < —p(a). p(b) < pla).
A={ }

e p(a) or p(b).

Al ={p(a)} A2={p(b)}

niversity of Texas at El Paso Knowledge Representation Group

13

Answer sets of arbitrary programs

Consider program IT° obtained from II by

(i) removing all rules containing not f such that S

satisfies f
(ii) removing all other premisses containing not

e S is an answer set of ITiff S is an answer set of [1°

1 I7° S ={q(a),p(b)}

{q(a),p(b)} is an answer set of II

University of Texas at El Paso Knowledge Representation Group

The consequence relation

e Program II entails literal [(I = 1) if [belongs to all

answer sets of II.

o If for some [, Il = [and II = =l then II is called

inconsistent.

e [I's answer to [is
YESif I1 =1,
NO if IT E =,
UNKNOWN otherwise.

The consequence relation is nonmonotonic, i.e., there

are [, @), R, such that IT = Q but [TU R [~ Q.

14

University of Texas at El Paso Knowledge Representation Group

15

Examples
o p(a) « not p(b).
? p(a). - YES
? p(b). - UNKNOWN
o p(a) « not p(b). —p(X) « not p(X).
? p(a). - YES
? p(b). - NO
o p(a) « not p(a).
NO ANSWER SET
o p(a) « not p(b). p(b) — not pla).
Al ={pla)} A2={p(b)}
e p(a) or p(b). —p(X) < not p(X).

Al = {pla), 7p(b)} A2={p(b), ~pla)}

University of Texas at El Paso Knowledge Representation Group

Simple Properties

e If a program II has a consistent answer set then all its

answer sets are consistent.

e For any answer set .S of program II of A-Prolog:
(a) For any rule

*lo<l1,..., L, not ly1,..., notl,

from II, if

{l,..., I} CSand {l,i1,...,1,} NS =10
then [p € S.

(b) If S'is a consistent answer set of Il and [y € S then

there exist a rule * from II such that

{ll,...,lm}QSand {lm+1,...,ln}mS:@.

16

University of Texas at El Paso Knowledge Representation Group

Simple Properties (Continued)

Let R be a collection of rules of A-Prolog. R™ is the

result of replacing all occurrences of =l in R by neg(l).

e S is an answer set of IT iff ST is an answer set of II™

not containing literals of the form [, neg(l).

e The consequence relation of A-Prolog is not cumulitive,

i.e. there are II and () such that
NEQ,MTERbutIIUQ ¥~ R
Proof: (Van Gelder)

p < notq.

q < not p.

r < notr.

r < not p.

17

University of Texas at El Paso Knowledge Representation Group

18

What is next?

To use A-Prolog to represent knowledge we need

e better understand the consequence relation and the no-

tion of argument in A-Prolog;

e develop mathematical tools to prove properties of pro-

grams of A-Prolog;
e develop methodology of representing knowledge;

e build implementations and develop methodology of their

use.

In this talk I concentrate mainly on methodology.

University of Texas at El Paso Knowledge Representation Group

Example: what is an orphan?

We assume that the machine already knows the notions

of parent and age. (age(P,0) may indicate that P is not

alive).
orphan(P) — child(P),

not has_a_parent(P).
child(P) +— age(P, A),

A < 21.

has_a_parent(P) < parent(X, P),
alive(X).

19

University of Texas at El Paso Knowledge Representation Group

20

Defaults

Questions:
e What is a default?

e How to specify exceptions to defaults and priorities be-

tween them?

e What is the set of valid conclusions entailed by a default

theory?

e How to arrive at these conclusions?

University of Texas at El Paso Knowledge Representation Group

21

What is default?

There are different answers to this question:

e Statement of natural language of the form “Elements of
a class C' normally (regularly, as a rule) satisfy property
P . This statement should be consistent with a statement
“x 1s an exception to this rule. It belongs to C' but does

not satisty P”.

e Defeasible statements of some nonmonotonic logic, e.g.
default rules or logic programming rules with negation as

failure.

Usually, the latter is understood as a mathematical model
of a former. However, there are many “formal” defaults

which model no “informal”’ ones.

University of Texas at El Paso Knowledge Representation Group

22

Example

Suppose we are given a list ¢ of people
in_t(mike). in_t(john).

and want to define the class of people not listed in ¢. This,

of course, can be done by the rule

rl. unlisted(X) < not in t(X).

The program entails unlisted(mary).
This conclusion can be defeated by adding
in_t(mary).

but cannot be defeated by adding
—unlisted(mary).

The latter attempt will (justifiably) lead to contradiction.

University of Texas at El Paso Knowledge Representation Group

23

Representing defaults

7

e “a’s are normally b’s ” translated as

r. b(X) < a(X), not ab(r, X), not =b(X) (1)
An expression not —b(X) is called a guard.

e “c’s are exceptional a’s. They do not satisfy

b’ translated as

—b(X) <+ c(X) (2)

e “c’s are exceptional a’s. They may or may

not satisfy b’ translated as
ab(r, X) < not —c(X) (3)

Exceptions of this sort are called weak exceptions.

University of Texas at El Paso Knowledge Representation Group

Representing defaults : an example
“Normally, parents care about their children. John is an
exception to this rule. He does not care about his.”

parent(john,sam). parent(mary,sam).

Default is expressed by the rule:

cares(X,Y) < parent(X,Y),
not —cares(X,Y).

John’s feelings are described as
—cares(john, X) < parent(john, X).
Pcares(mary,sam). YES

?cares(john,sam). NO

?cares(sam,sam). UNKNOWN

24

University of Texas at El Paso Knowledge Representation Group

Defaults (continued)

“Normally, students are afraid of math. Math students

are not. Those in CS may or may not be afraid.”

in(john,english). in(mary,cs). in(pat, math).
—in(S, D1) — in(S,D2), D1 # D2.
afraid(S,math) < student(S),

not ab(.5),

not —afraid(S, math).
ab(S) < student(S),

not —in(S, cs).
—afraid(S, math) < student(S),
in(S, math).
? afraid(john,math). YES

? afraid(mary, math). UNKNOWN

! afraid(pat, math). NO

25

University of Texas at El Paso Knowledge Representation Group

26

Example: Null values in databases

In databases incomplete information is normally repre-

sented by NULL values. Problems:

e How to define answer to a query?

Relational algebra operations do not extend to relations

with null values.

Translation to predicate calculus can’t deal with the Closed
World Assumption: “Normally, if things are not in the ta-
bles they are false.”

e How to compute the answers?

University of Texas at El Paso Knowledge Representation Group

Proposed Solution

e Use A-Prolog to
(a) rewrite database tables
(b) express the closed world assumption.
e Use answer set semantics to define answer to a query.

If IT is a program representing database tables and CWA
then answer to a query Q(X) is

{t: IE=QM)}

e Use SMODELS like systems to answer the query.

27

University of Texas at El Paso Knowledge Representation Group

28

Example: Complete database

The following table represents COMPLETE info about

the summer schedule of a department:

Professor | Course

mike pascal

john C

Program representing this info:
1. t(mike, pascal).

2. t(john,c).

3. 7t(X,Y) + not t(X,Y).

? t(mike,c). NO

University of Texas at El Paso Knowledge Representation Group

29

Incomplete Database 1

Professor | Course
mike pascal
john C

staft lisp

STAFF is a null value which stands for an unknown pro-

fessor (possibly different from Mike and John).

How to represent this information?

1. t(mike,pascal). t(john,c). t(staff,lisp).
2a. = t(X,Y) < not t(X,Y), not ab(X,Y).
2b. ab(X,Y) < t(staff,Y).

? t(mike,c). NO, ?t(mike,lisp). UNKNOW N

University of Texas at El Paso Knowledge Representation Group

30

Incomplete Database 2

Professor Course
mike pascal
john C

{mike, john} | prolog

staft lisp

where {mike john} represents the second type of nulls —

“value unknown but one of the finite set of values”.

1. t(mike,pascal). t(john,c). t(staff,lisp).

2. t(mike, prolog) or t(john,prolog).

3a. 7t(X,Y) < not t(X,Y), not ab(X,Y).

3b. ab(X,Y) < t(staff,Y).

t(mike,c). NO, ?t(mike,prolog). UNKNOW N

? t(mike, prolog) A t(john,prolog). NO

University of Texas at El Paso Knowledge Representation Group

31

Inheritance hierarchy (closed nets)

We identify a net /N with a collection of literals of the form
subclass(cy, ¢c2), default(d, c,p,+), and de fault(d, ¢, p, —)

corresponding to N’s links.

An is-net N informally specifies a function which takes as
an input collections of literals formed by predicate symbol
15 and computes all possible conclusions about relations
1s and has which a rational agent can obtain from this
net. If the membership relation ¢s defined by the net is

complete the net is called closed.

University of Texas at El Paso Knowledge Representation Group

Defining the membership relation

For closed nets 7s 1s defined as:

is(0, C) +— subclass(CO,C),
is(0, C0).
—is(0, C) +— not is(0,C).

is_subclass(C1,C2) « subclass(C1,C?2).

is_subclass(C1,C2) « subclass(C1,C3),
is_subclass(C'3,C2).

To implement the inheritance principle, more specific

information is more important than less specific one,

we need relations

exception(e,d,+) - positive default d is not applicable to

objects of class e.

exceptional(z,d,+) - positive default d is not applicable

to object x.

Similarly for negative defaults.

32

University of Texas at El Paso Knowledge Representation Group

Defaults with exceptions

has(x,p) <

—has(z,p) +

exception(e,dy, +) <

exception(e,dy, —) <

exceptional(x,d, s) <

de fault(d, c, p, +),
is(x,c), not —has(x,p),
not exceptional(x,d,+).
de fault(d,c,p, —),
is(x,c), not has(z,p),
not exceptional(z,d, —).
de fault(dy,c,p,+),

de fault(ds, e, p, —),

not subclass(c, e).

de fault(dy, c,p, —),

de fault(ds, e, p, +),

not is_subclass(c, e).
exception(e,d, s),

is(x,e).

33

T

University of Texas at El Paso

Knowledge Representation Group

34

Open Nets

Now let us assume that the net is open, i.e. there is
no CWA for the membership relation ¢s. The modified
definition for zs looks as follows:
is(0,C2) <+ 1is(0,C1),
is_subclass(C'1, C2).
—15(0,C1) <+ —is(0O,C2),
is_subclass(C'1, C2).
—is(X,C1) < is(X,C2),
not 1s_subclass(C1, C2),
not is_subclass(C2,C1).
The last rule says that the classes not belonging to the

same path are disjoint.

University of Texas at El Paso Knowledge Representation Group

35

Open Nets (continued)

Consider an open net

Intuitively, the correct answer to a query p(x) is UN-
KNOWN. The 7’s answer to it however is YES. The prob-
lem can be corrected by replacing the rule for exceptional

in 7 by the rule

exceptional(x,d, s) < exception(e,d,s),

R

not —is(x,e).

which says “do not apply d to x which may belong to

exceptional class”.

University of Texas at El Paso Knowledge Representation Group

36

Reasoning with prioritized defaults

We need to reify defaults. Let o contain names of objects,

functions, and relations.

Literals of L(o) are:

1. literals of o

2. rule(r, ly, T')

3. default(d, ly, I', A)

4. exception(d, I', A)

5. prefer(dy,ds)

6. conflict(dy,ds)

[, A - sets of literals; not A={notl:l e A}

Sets of ground literals of L(o) are called domain de-

scriptions.

University of Texas at El Paso Knowledge Representation Group

37

Informal Semantics
o rule(r, [, ')
[T
o default(d, I, T', A)
If X satisfies I' and not A then it satisfies /.
e cxception(d, T', A)
Default d is not applicable to object X
which satisfies I' and not A.
o prefer(dy,ds)
If defaults dy, do are in conflict with each other
and d; is applicable to X then ds is not.
o conflict(dy,ds)

Defaults d; and ds have conflicting conclusions.

University of Texas at El Paso Knowledge Representation Group

38

Query Language

Relations holds(l) and holds by default(l) are defined
on literals of L(o).

The query language associated with domain descriptions

of L(0) consist of ground atoms of the form

holds_by_de fault(l)
holds(l)
and their negations.

Main Question: What is the entailment relation D =
q?

Axiomatic Approach: Find a set of axioms P, cap-

turing general properties of defaults.

D = q if q belongs to every answer set of the program

P,(D) =P, U{holds(l) | | € fact(D)} U laws(D).

University of Texas at El Paso Knowledge Representation Group

Non-defeasible Inference:

holds(L) < rule(R, L, Body), (4)
hold(Body).
hold([]). (5)
hold([H|T]) < holds(H), (6)
hold(T).

The first axiom defines the relation holds which is sat-
isfied by a L(o) literal [iff [is non-defeasibly true in
the domain description D. The next two axioms de-

fine the same relation on the lists of literals in £(o), i.e.,

hold(|ly, . ..,1,]) iff all I’s from the list are true in D.

39

University of Texas at El Paso Knowledge Representation Group

Defeasible Inference:

holds_ by de fault(L) < holds(L). (7)

holds by default(L) < rule(R,L,T), (8)
hold by de fault(T").

holds_by de fault(L) < default(D,L,T"; A), (9)
hold_by_de fault(T'),
fail by _default(A),
not defeated(D),
not holds by de fault(—L).

40

University of Texas at El Paso Knowledge Representation Group

41

hold by de fault(| |). (10)

hold by de fault(|[H|T]) < holds by default(H), (11)
hold by de fault(T).

fail by default(]]). (12)

fail by default(|[H|T]|) <+ (13)

not holds by default(H),
fail by default(T).

University of Texas at El Paso Knowledge Representation Group

Defeating defaults:

defeated(D) < default(D,L,T", A), (14)
holds(—L).
de feated(D) < default(D,L,T';A), (15)

de fault(Dy, L1,T'1, Ay),

holds(con flict(Dy, D)),
holds_by_de fault(prefer(D1, D)),
hold_by _de fault(I'y),

fail by _default(Ay),

not defeated(D:).

42

University of Texas at El Paso Knowledge Representation Group

43

Defeating defaults (continued)

de feated(D) < (16)
exception(D, Positive, Negative),
hold_by_de fault(Positive),
fail by _de fault(Negative).

Preference

—holds(prefer(Dy, Ds)) <+ (17)
holds(prefer(Ds, D1)),
Dy +# D,.

University of Texas at El Paso Knowledge Representation Group

Axioms for conflict

holds(con flict(dy, ds)) (18)

for any two defaults with contrary literals in their heads
and for any two defaults whose heads are of the form

prefer(d;,d;) and prefer(d;,d;) respectively.

—holds(con flict(D, D)) (19)

holds(con flict(D1, Ds)) < (20)
holds(con flict(Ds, Dy)).

44

University of Texas at El Paso Knowledge Representation Group

45

Example: defaults

Consider two legal default rules:

e Normally, a person who cannot be shown to be a minor

has the capacity to perform legal acts.

e In order to exercise the right to vote the person has to

demonstrate that he is not a minor.

The defaults can be represented as

1. default(di(z), has legal capacity(x), ||, [minor(z)]).
2. default(ds(x), has right to vote(x), [~minor(z)|,[]).
Let D be (1), (2) and =minor(mike).

D = has right to vote(mike).

D ¥ has right to vote(mary).

D = has_legal_capacity(mary).

University of Texas at El Paso Knowledge Representation Group

46

Example: Priorities

The signature of our domain contains the following re-

lations:
possession - “Mike is in possession of the ship”
per fected - “Mike’s ownership of the ship is perfected”

filed - “Mike filed the financial statement about posses-
sion of the ship”.

federal(D) - “D is a federal law”
state(D) - “D is a state law”

more_recent(Dy, Do) - “Law Dy is more recent than Ds”

University of Texas at El Paso Knowledge Representation Group

Domain Description

Facts about Mike’s ownership:
POSSESSION.

= filed.

Legal laws about perfecting the ownership:
de fault(dy, perfected, |possession],|]).
de fault(dy, —per fected, |—filed],]|]).
and their status:

more_recent(dy, ds).

federal(dy).

state(dy).

47

University of Texas at El Paso Knowledge Representation Group

48

Legal principles for resolving conflicts

de fault(ds3(D1, Ds), prefer(Dy, Do),
imore_recent(D1, Ds)l, []).

de fault(ds(D1, Do), prefer(Dy, Do),

\federal(Dy), state(D-)], | |)-

Complete knowledge of laws status
de fault(ds(Dy, D), —~more_recent(Dy, Ds),|],]])
de fault(dg(D),—federal(D),|],]]).

de fault(d7(D), —state(D),|],]]).

University of Texas at El Paso Knowledge Representation Group

49

The resulting program P(Dy) has answer sets A; and As:
(i) holds by de fault(per fected) € A,

(ii) —holds_ by de fault(per fected) € As

To resolve the ambiguity we add

prefer(d4(Dy, Dy), d3(Ds, Dy)).

Now Aj is the only answer set of the program P(D;).

University of Texas at El Paso Knowledge Representation Group

50

Changing the mode of reasoning

The theory P considered so far allows alternative sets of
beliefs about the world. This is a powerful mode of rea-
soning which includes reasoning by cases. The alternative
may be to construct P, which blocks application of both

defaults. This can be done by the axiom

defeated(D) < default(D, L, Body), (21)
de fault(Dy, L1, Body,),
holds(con flict(Dy, D)),
not holds by default(prefer(D1, D)),
not holds by default(prefer(D, D1)),
hold_by_de fault(Body),
hold_by_de fault(Bodyy).

University of Texas at El Paso Knowledge Representation Group

51

Example: acting agents

e Problem: how to design software components
of agents capable of reasoning, planning and

acting in a changing environment.
e Simplifying Assumptions:

1. The environment can be viewed as a tran-
sition diagram whose states are sets of fluents

and whose arcs are labeled by actions.

2. The agent is capable of making correct ob-
servations, performing actions, and remember-

ing the domain history.

University of Texas at El Paso Knowledge Representation Group

The diagram

losesimoney)

52

hasimoney] ¥ losesiticket) { has(money) “has(money)
jack_at(home) jack at(home) jack at{home) [==
“has(ticket) hasiticlket) oet simoney) hasiticket)
drives(home) drives(home) A
drives{pirport) drives{airport
gets(ticket] = |2
B B has(money) : has(mn.ney} g 2
E g jack_at{airpert) Jack_at(airport] 2| |3
= = .] e’
El | & —has(ticket) hasfticket) 2] |8
2 = loses(ticket RE:
gets{money) get s(m ofeyy
loses(m oney] losesim oney)

“has(money) i o “has(money) loses(ticketj { ~has(money]
Jack_atthome) jack_at(airport) jack_at(airport)
—has(ticket) “has{ticket) hasiticlket)

drivesthoma)
losesiticket)

University of Texas at El Paso

Knowledge Representation Group

53

Difficulties

For any state ¢ and any action A we need to
define possible successor states. To do that we

need to

e Understand causal reasoning in the presence

of complex interrelations between fluents.

e Represent the inertia axiom: “Normally, ac-

tions do not change values of fluents.”

Recent developments in a subfield of AI, called
“reasoning about actions”, substantially clari-
fied the causality question. (McCain, Turner,
Lifschitz, Baral, Gelfond, Thielscher, Sandwall)

University of Texas at El Paso Knowledge Representation Group

54

Describing the diagram: the language

e Fluents F{,F,,... and actions A, A,,.. ;
e Causal Laws

(a) causes(A,F,|Pq,...,Py]) - action A causes
fluent literal F to be true after A is executed

in any state which satisfies P¢,...,P,.

(b) caused(F,[Pq,...,Py,]|) - fluent literal F is

true because fluent literals Pq,..., P, are true.
e Executability Conditions

(c) impossible(A, [Pq,...,Py]) - action A cannot

occur in a state satisfying Pq,...,P,.

University of Texas at El Paso Knowledge Representation Group

Describing the diagram (continued)

The discovery: there is a program P of A-
Prolog such that a state S’ is a successor state
of a state S w.r.t. action A if S’ is an answer

set of the program P U S.

Computing successor states is reduced to com-

puting answer sets!

%)

University of Texas at El Paso Knowledge Representation Group

56

Describing history

e Time points: 1,2, ...

e Axioms:
(a) observed(F, T) - fluent literal F is observed
to be true at the moment 7
(b) occurs(A, T).

e A set of axioms defines a collection of paths in the
diagram which can be interpreted as possible histories of
the domain. If our knowledge is complete and actions are

non-deterministic there is only one such path.

University of Texas at El Paso Knowledge Representation Group

S7

Describing Queries

T is a moment in the past.
e 7 holds at(F,T) - did F hold at moment T?
e 7 holds at(F) - does F currently hold?

e 7 holds after(F,«, T) - would F be true if «

were executed at T?

e 7 holds after(F,«a) - will F be true after the

execution of « in the current situation?

e 7 holds after(F,X) - find plan X to achieve
F.

University of Texas at El Paso Knowledge Representation Group

58

The consequence relation

A - description of actions, I' - set of axioms, Q
- query
' =aQ

Problems of reasoning, planning, explaining ob-
servations, etc. can be reduced to computing

this consequence relation.

This, in turn, can be reduced to answering

queries in A-Prolog!

University of Texas at El Paso Knowledge Representation Group

99

Architecture for Intelligent Agents
The agent memory contains action description A, the his-
tory I', and the set of goals G. It executes the loop:

1. observe (expand axioms by new observations)
2. select_goal(G);
3. plan, i.e. find a4, ..., a, such that
[' =4 holds_after(G,|ay, .. ., a,l);
4. execute(ay);

At stages (1) and (4) the axioms I' are expanded by new
information about actual occurrences of events (both,
caused by and observed by the agent), and observations

of fluents.

University of Texas at El Paso Knowledge Representation Group

Example: Jack’s trip to the airport

Types :

location(home).

object(money).

Fluents :
jack _at(L)
has(O)

Actions :
drive(L)
get(0)
lose(O)

4

location(airport).

object(ticket).

location(L).
object(O).

location(L).
object(O).
object(O).

60

University of Texas at El Paso

Knowledge Representation Group

Trip to the airport: Laws and History

Causal Laws :

impossible(drive(L), jack_at(L)).
causes(drive(L), jack_at(L), none).
impossible(get(ticket), ~has(money)).
ticket), ~jack_at(airport)). A

), has(O)).

causes(get(0), has(O), none).

impossible(get(
impossible(get(O
causes(lose(O), =has(O), none).

caused(—jack_at(L1), jack-at(L2)).ifL1 # L2 |

Axioms :

observed(has(money), 0).

observed(—has(ticket),0).

observed(jack_at(home),0). |

61

University of Texas at El Paso Knowledge Representation Group

62

Jack in action

1. observes 'y and selects the goal has(ticket);
2. solves Iy =4 holds_after(has(ticket), X),
X = [drive(airport), get(ticket)];
3. executes the first action,
[y = Ty U{occurs(drive(airport), ty) };
4. observes —has(money),
[y =T'1 U {holds_at(—has(money), t1)};
5. solves I's =4 holds_a fter(has(ticket), X)

X = |get(money), get(ticket)].

University of Texas at El Paso Knowledge Representation Group

Modeling Jack’s behavior

Jack’s behavior was modeled by a computer program

which solves the corresponding equations by calling S-

models or DLV.

The idea: Use A-Prolog to represent a diagram (DIA) and
a class of possible future paths of a given length which

may contain a plan (CM).

Observation: Given an action description A, complete
history H with a current moment n, maximum length of

a plan, 1, and a goal G:
ai,...,a; s a plan for G iff

occurs(ai,n),

o ey

occurs(ag,n + k)

belongs to an answer set of A + H 4+ DIA + CM + G.

63

University of Texas at El Paso Knowledge Representation Group

64

Domain independent axioms (DIA)

holds(F,T1) < mnext(T,T1), fluent(F),action(A),
causes(A, F, P),
holds(P,T),
occurs(A,T).

holds(none,T) < time(T).
holds(F,T) — time(T), fluent(F),
caused(F, G),

holds(G,T).

holds(F,T) <« time(T), fluent(F),
observed(F,T).

University of Texas at El Paso Knowledge Representation Group

65

DIA continued

holds(F,T1) < next(T,T1), fluent(F),
holds(F,T),
not ab(F,T).

ab(F,T) — time(T), fluent(F'), action(A),
causes(A, F, P),
holds(P,T),
occurs(A,T).

ab(F,T) — next(T,T1), fluent(F),
caused(F, G),
holds(G,T1).

University of Texas at El Paso Knowledge Representation Group

Describing possible futures (CM)

The following rule can be used to look for sequential plans.

occurs(Ay, T) or...or occurs(A,,T) <
time(T), current(Tc), T > Tkc,

agent_action(Ay),

agent_action(A,),
not goal(T).
Parallel plans can be found using
occurs(A,T) or occurs(—A,T) <
time(T), current(Tc), T > Tkc,
agent_action(A),
not goal(T).

66

University of Texas at El Paso Knowledge Representation Group

Control module (continued)

We also need constraints:
— time(T), occurs(lose(money), T),
occurs(get(ticket),T).
— time(T), fluent(F), action(A),
impossible(A, F), holds(F, T), occurs(A,T).
Control strategy can be much more sophisticated. For
instance, to say that we should try action a2 only if al
is impossible we can introduce a new, complex action, a
and add rules
occurs(al,T) < occurs(a,T),
not impossible(al,T).
occurs(a2,T) < occurs(a,T),
impossible(al,T).

Have declarative specification of control!

67

University of Texas at El Paso Knowledge Representation Group

68

Modeling the trip (continued)

Select goal:
goal(T) < time(T),
holds(has(ticket),T).
A program A + T'g + DIA + CM + goal(lasttime) to-
gether with a parameter lasttime = 3 is given as input to

SMODELS. It returns several plans, the shortest being
occurs(drive(airport),0), occurs(get(ticket),1).
Perform the first action, i.e. add
occurs(drive(airport),0).

to the history. Observe, that money is lost
occurs(lost(money),0).

Verify the rest of the plan. Need to replan. Call
SMODELS again with history I'y, etc.

University of Texas at El Paso Knowledge Representation Group

Explaining observations
On the previous slide we recorded the loss of money by
2. occurs(lost(money),0).

which can be viewed as an explanation of the original

observation
1. observed(—has(money)).

Notice that if (1) is used in history I'y instead of (2), the

resulting program will have no model. If this is detected
by SMODELS, the explanation (2) of (1) can be found

by examining answer sets of the program

A+T14+ DIA + the rule
occurs(A,T) or occurs(—A,T) <+
time(T), current(Tc),T < Tec,

exogenous_action(A),

not goal(T).

69

University of Texas at El Paso Knowledge Representation Group

70

Current work

e Execution time of S-models and DLV signif-
icantly depends on the form of their input.
Finding representation of domain knowledge
which improves efficiency of planning is in some
ways similar to the work on finding proper data
structures in procedural languages. This is one

of our priorities now.
e Larger applications - the shuttle control.

e We still need better understanding of default
reasoning, e.g. how to conveniently represent

prioritized defaults.

HUGE PROGRESS BUT MANY
UNANSWERED QUESTIONS!

University of Texas at El Paso Knowledge Representation Group

