Logic Programming and Reasoning

about Actions and Time

Michael Gelfond

Department of Computer Science
University of Texas at El Paso

El Paso, TX 79968
mgelfond@cs.utep.edu

University of Texas at Fl Paso Knowledge Representation Group

Formal Theories of Actions are needed to:

1. describe dynamic behavior of programs, databases,

robots, and other reasoning and acting agents;

2. build agents capable of performing actions and

reasoning in the dynamic world;
3. reason about such agents.
Various disciplines put different emphasis on such
theories.

Programming theory: simple domain, complex ac-

tions.

Artificial intelligence: complex domain, simpler ac-

tions.

I will concentrate on Al side of the story.

University of Texas at Fl Paso Knowledge Representation Group

In AT our goal is to model and build agents capa-
ble of reasoning, planning and acting in a changing

environment.

An agent is normally given some description of its

domain and the set of goals.

Its task is to use his knowledge and reasoning and

acting ability to achieve these goals.

Questions:

e What is a suitable ontology for dynamic domains?

e What languages can we use to describe such do-
mains?
e What entailment relation(s) model commonsense

reasoning about actions?

e What are the assumptions underlying this rea-

soning?

University of Texas at Fl Paso Knowledge Representation Group

Possible answers:

Actions can be atomic, concurrent, sequential,
instantaneous or continuous, deterministic or

non-deterministic, ...

Time can be linear or branching, discrete or

continuous, represented by points or by intervals,

Languages can be based on classical or non-classical
logics, have truth-theoretic or probabilistic se-

mantics, be specialized or general purpose, ...

The answer should provide modularity (small changes
in the agent’s knowledge about the domain shall not

cause big changes in his knowledge base).

We start with simple ontology and simple lan-
guage and gradually move to more complex

theories

University of Texas at Fl Paso Knowledge Representation Group

Situation Calculus

Conceived by J. McCarthy in 1967. Is not born yet.
1. Objects of three types:

e fluents (functions of time)

e actions (atomic, deterministic and inertial)

e situations (sequences of actions representing

possible histories of the world)

2. Time (represented by situations) is branching and

discrete;

3. Changes in the values of fluents can only be

caused by execution of actions;

4. First-order language is used to describe dynamic

domains.

University of Texas at Fl Paso Knowledge Representation Group

In the basic language of situation calculus we can:

e name situations - sy, res(shoot,res(load, sg))
(performing (an instance) of an action A in a situ-

ation S moves the world into a situation res(A, S))

e state that a fluent 1s true in them -

holds(dead, res(shoot, res(load, sp)))

e describe effects of actions -
h(loaded, S) D —h(alive,res(shoot, S))

Inertia axiom (specify what fluents are NOT changed

by actions)
(F # alive V =h(loaded, S)) D
(h(F,S) = h(F,res(shoot, S))

University of Texas at Fl Paso Knowledge Representation Group

Advantages:

e First-order logic has well understood semantics

and proof theory.

e Branching structure of time allows hypothetical

reasoning and hence is well-suited for planning.

Disadvantages:

e Unclear ontology
Is statement sy = res(a, sg) consistent with the
ontology?

e Can the ontology be enriched without basic change

in the language?

e How can we write the Inertia Axiom in more com-

plex domains?

University of Texas at Fl Paso Knowledge Representation Group

Example: Suppose we want to expand previous the-

ory by new effect axiom: —h(loaded, res(shoot, S)).

Old Inertia Axiom should be replaced by the new

one:
((F # alive A F # loaded) V —h(loaded, S)) D
(h(F,S) = h(F,res(shoot, S))

The necessity to remove information from the knowl-
edge base can be considered a substantial drawback
of the method. The situation becomes much more
complicated if the theory includes relationship be-

tween fluents, e.g.
h(alive,S) = —h(dead, S) h(fly,S) D h(alive, S)

Attempts to find general formulation of Inertia Ax-

iom greatly contributed to the development of NON-
MONOTONIC LOGICS.

University of Texas at Fl Paso Knowledge Representation Group

Formalizing defaults

Formalization of the Inertia Axiom can be viewed
as a specific instance of a more general problem of
representing defaults, i.e. statements of the form

“objects of the type A normally have property
P”.

Reasoning with defaults seems to be inherently non-
monotonic, i.e. new information can force a reasoner

to withdraw his previous conclusions.

Defaults (sometimes called normative statements)
may be understood as communication agreements
and expressed in logic programming and other non-

monotonic logics.

NONMONOTONIC LAW OF INERTIA: Things

normally stay as they are.

University of Texas at Fl Paso Knowledge Representation Group

10
Shooting scenario in LP

Inertia Axiom

true_after(F,[A|S]) :- true_after(F,S),

not ab(F,A,S).
Effect Axiom
ab(alive,shoot,S) :- true_after(loaded,S).
Initial State
true_after(alive, []). true_after(loaded, []).

ttrue_after(alive, [shoot]) NO

?true_after(loaded, [shoot]) YES

To specify that the gun is one-shooter ADD:

ab(loaded,shoot,S) :- true_after(loaded,S).

University of Texas at Fl Paso Knowledge Representation Group

11

EVENT CALCULUS (Kowalski and Sergot)

The simplified version has linear discrete time, flu-

ents and action-tokens and action-types.

Domain Dependent Axioms:

initiates(E,loaded) :- act(E,load).
terminates(E,loaded) :- act(E,shoot).
terminates(E,alive) :- act(E,shoot),

happens(E,T),
holds_at(loaded,T).

happens(e0,0). initiates(e0,alive).
happens(el,1). act(el,load).
happens(e2,2). act(e2,shoot).

University of Texas at Fl Paso Knowledge Representation Group

12

Inertia Axiom

holds_at(P,T) :- happens(E1,T1),
initiates(E1,P),
Tl < T,
not clipped(T1,P,T).

clipped(T1,P,T) :- happens(E2,T2),
T1 < T2,
T2 < T,

terminates(E2,P).

? holds_at(alive,1) -- Yes

? holds_at(alive,3) -- No

University of Texas at Fl Paso Knowledge Representation Group

Even though the above representations of the shoot-
ing scenario are simple and computationally efficient
they were not taken seriously by the AI community.
The main (technical) reason was the weakness of the
logic programming language. It is difficult for in-
stance to represent incomplete information without
negation and disjunction, etc. How do we say “Ini-
tially, the gun is not loaded but there is no informa-

tion on turkey’s health”?

Recent extensions of LP languages by explicit nega-
tion, disjunction, etc. change the situation some-

what. Initial state above can be represented by
—true_after(loaded,).

Recall, that a program II answer “Yes” to a query)
if IT entails @, “No” if II entails =() and “Unknown”

otherwise.

13

University of Texas at Fl Paso Knowledge Representation Group

In the next two examples we expand our language

by allowing

e Explicit Negation.

e Non-frame fluents, i.e. fluents defined in terms of
basic (frame) fluents. Non-frame fluents can be
used only as a shorthand and can (in principle)

be eliminated from a domain description.
e Non-executable actions.

e Static causal laws.

We need the notion of fluent literal - fluent or ex-
pression neg(f) where f is a fluent. We will as-
sume that the programs below are extended logic

programs containing a rule:

—true_after(F,S) :- fluent(F), true_after(neg(F),S)

14

University of Texas at Fl Paso Knowledge Representation Group

15

Blocks World in LP

DOMAIN DESCRIPTION

Types:

block(a). block(b). block(c). block(t).

frame_fluent(on(_,_)).

action(move(X,Y)) :-
block(X),
block(Y),
diff(X,Y),
diff(X,t).

University of Texas at Fl Paso Knowledge Representation Group

Executability and Causal Laws:

possible_if (move(X,Y), [clear(X),clear(Y)]).

causes(move(X,Y),on(X,Y),[]).
causes(move(X,Y) ,neg(on(X,Z2)),[]) :-
diff(Y,Z).

Initial Situation:

initially(on(a,b)).
initially(on(b,c)).

initially(on(c,t)).

initially(neg(on(X,Y))) :-
not initially(on(X,Y)).

16

University of Texas at Fl Paso

Knowledge Representation Group

17

Definitions of Non-frame fluents

clear and occupied are non-frame fluents. They are
defined in terms of frame fluents and are not subject
to the inertia axiom. (strictly speaking occupied(X)

should be viewed as a shorthand for neg(clear(X))).

true_after(clear(t),S).

true_after(clear(X),S) :-

not true_after(occupied(X),S).

true_after(occupied(X),S) :-
block(Y),

true_after(on(Y,X),S).

University of Texas at Fl Paso Knowledge Representation Group

8
DOMAIN INDEPENDENT AXIOMS
Ltrue_after(F,A)

LF - fluent or set of fluents,

%A - situation

Ymode + +
Effect Axioms

true_after(F,[]) :-
frame_literal(F),

initially(F).

true_after(F,[A|R]) :-
frame_literal(F),
possible_if (A,P1),
true_after(P1,R),
causes(A,F,P2),

true_after(P2,R).

University of Texas at Fl Paso Knowledge Representation Group

19

Inertia Axiom

true_after(F,[A|R]) :-
frame_literal(F),
possible_if (A,P),
true_after(P,R),
true_after(F,R),

not ab(F,A,R).

ab(F,A,R) :-
contrary(F,G),
causes(A,G,P),

true_after(P,R).

University of Texas at Fl Paso Knowledge Representation Group

Evaluating sets of fluents

true_after([],A).
true_after([H|T],A) :-
true_after(H,A),

true_after(T,A).

Library

frame_literal(F) :-
frame_fluent(F).

frame_literal(neg(F))
frame_fluent(F).

eq(X,X).

diff(X,Y) :- not eq(X,Y)

contrary(neg(F),F).

contrary(F,neg(F)).

20

University of Texas at Fl Paso

Knowledge Representation Group

21
Application - generate and test planner

generate([]).

generate([A[S]) :-
generate(S),
action(A),

possible_at(A,S).

possible_at(A,S) :-
possible_if (A,P),

true_after(P,S).

plan :-
write(’Enter the goal’),nl,
read(Goal),
generate(Plan),
true_after(Goal,Plan),

nl,nl,write(’Plan is ’),write(Plan),nl.

University of Texas at Fl Paso Knowledge Representation Group

Suitcase Domain

Consider a “suitcase” domain (Lin 95) in which there
is a suitcase with two locks. We model the domain
by naming the locks 1 and 2, introducing actions
unlock(X) and lock(X) where X ranges over the
locks, and fluents, locked(X) and open (where suit-
case being open). The following causal relations are

self-evident:
causes(lock(X), locked(X),[])

causes(unlock(X), neg(locked(X)),[])

Let us also assume that the suitcase is spring-loaded
and therefore becomes open when both its locks are

unlocked. How do we represent this information?
Static Causal Laws: “fluents cause fluents”

causes(|unlocked(1), unlocked(2)], open)

22

University of Texas at Fl Paso Knowledge Representation Group

Domain dependent axioms

frame fluent(locked(1)).
frame fluent(locked(2)).

frame_fluent (open) .

Dynamic causal laws

causes(lock(X),locked(X),[]).
causes(unlock(X) ,neg(locked(X)),[]).

Static causal laws
causes([neg(locked(1)),neg(locked(2))],open).
Initial Situation

initially(locked(1)).
initially(neg(locked(2))).

initially(neg(open)).

23

University of Texas at Fl Paso Knowledge Representation Group

Domain independent axioms

Effect Axioms

true_after(F,[]1) :- frame_literal(F),
initially(F).
true_after(F,[A|S]) :- frame_literal(F),

causes(A,F,P),

true_after(P,S).

true_after(F,S) :- frame_literal(F),
causes(G,F),

true_after(G,S).

24

University of Texas at Fl Paso Knowledge Representation Group

25

Inertia Axiom

true_after(F,[A|R]) :- frame_literal(F),
true_after(F,R),

not ab(F,A,R).

ab(F,A,R) :- contrary(F,G),
causes(A,G,P),

true_after(P,R).

ab(F,A,R) :- contrary(F,G),
causes(P,G),

true_after(P, [A|R]).

University of Texas at Fl Paso Knowledge Representation Group

26

Correctness Issues

Since the program attempts to capture and refine
our intuition of dynamic systems we can not demon-
strate its correctness mathematically. We can use
mathematics though to check that the program has
some properties necessary for its correctness. For in-
stance we can show that the above program is consis-
tent, i.e. has a consistent answer set. Determinism
of the system corresponds to uniqueness of this set,
etc. This is of course not enough. The above pro-
grams are consistent and have unique answer sets

but they are incomplete and incorrect.

University of Texas at Fl Paso Knowledge Representation Group

27

Incompleteness

causes(a, f,[p]).

causes(a, f,[-p]).

The answer to query

Ttrue_after(f,|a])

is UNKNOWN instead of intuitive YES.
Incorrectness

inttially(alive).

causes(shoot, malive, [loaded))

The answer to query

?true_after(alive, [shoot])

is YES instead of intuitive UNKNOWN.

University of Texas at Fl Paso Knowledge Representation Group

The error can be corrected by changing the cance-
lation axioms defining predicate ab. First, let us in-

troduce

—true_after([F|T], S) - —true_after(F,S).
—true_after([F|T], S) - -true_after(T,S).
and change the old cancelation axioms by
ab(F,A,R) :- contrary(F,G),

causes(A,G,P),

not false_after(P,R).

ab(F,A,R) :- contrary(F,G),
causes(P,G),

not false_after(P,[A|R]).

(Here false_after(P,S) stands for —true_after(P, S)).

28

University of Texas at Fl Paso Knowledge Representation Group

29

Problem: How can we convincingly demonstrate

correctness and completeness of our theories?

Possible solution: Specify dynamic systems we
want to model and prove correctness and complete-

ness of our representation w.r.t. these specifications.

e First-order Logic and Circumscription
e Sandewall (Ego-World Semantics)

e Action Description Languages

Next we discuss an action description language L

(Baral, Gelfond, Provetti, to appear in special issue

of JLP)

University of Texas at Fl Paso Knowledge Representation Group

30

Ontology of L

1. Objects of three types:
e fluents
e actions
e (actual) situation

2. Actions are indivisible, sequential, deter-

ministic and inertial

3. Possible histories form a tree with actual
situations located on a finite path correspond-

ing to the actual history

4. Changes in the values of fluents can only

be caused by execution of actions

University of Texas at Fl Paso Knowledge Representation Group

31
Language

1. Language L, allows to express
o effects of actions
e statements about fluents in
particular situations
e statements about occurrences of
actions in particular situations

2. The alphabet of L; consists of three dis-
joint nonempty sets of symbols F, A and S,

for fluents, actions, and situations.
If fis a fluent then f and — f are fluent literals

S contains two special situations s) and s. called

initial and current situations.

a1, ..., a,] denotes a sequence of actions.

University of Texas at Fl Paso

Knowledge Representation Group

32

Effect Laws

Express general knowledge about effects of

actions.

a causes f if pi,...,p,

a is an action and f and p’s are fluent literals.

The intuitive reading: “f is true after a is ex-

ecuted in any state which satisfies py,...,p,”.

p’s are called preconditions of the effect ax-
iom. If the axiom has no preconditions it can

be written as

a causes f

University of Texas at Fl Paso Knowledge Representation Group

33

Facts

Express particular observations about occur-

rences of actions and values of fluents.
f at s

“f is observed to be true in (actual) situation

s”,

a occurs_at s

“action a was observed to have occurred in

situation s”.
s1 precedes s,
“situation s, occurred after situation s;.

Domain Description - a set of effect laws and

facts.

University of Texas at Fl Paso Knowledge Representation Group

34

Example

Given: a series of observations about Fred:

(a) when the water pistol was squirted Fred

was seen to be alive and dry,
(b) in a later moment a shot was fired at Fred.
Suppose also that it is generally known that
(c) squirting makes Fred wet,

(d) shooting makes Fred dead

University of Texas at Fl Paso Knowledge Representation Group

Fred’s story in L

sented by a domain description D,

pl) alive at s
p2) dry at s

) squirt occurs_at s
p4) sy precedes s

)

p5) shoot occurs_at s

Laws :
(p6) squirt causes —dry

(p7) shoot causes -—alive

The information from the story can be repre-

35

University of Texas at Fl Paso

Knowledge Representation Group

Assumptions

Domain descriptions are used in conjunction

with the following informal assumptions:

(a) Changes in the values of fluents can only

be caused by execution of actions.

(b) Effects of executing an action are specified

by the effect laws

(c) No actions occur except those specified by

the domain description.

A semantics should specify the sets of accept-
able conclusions which can be reached from

domain descriptions and assumptions (a)-(c).

36

University of Texas at Fl Paso Knowledge Representation Group

37

Semantics: Interpreting the laws

e state is a set of fluents.

e fluent f holds in a state o if f € o; =f holds in ¢
if f&o.

e f is an effect of (executing) a in o if there is

Y

an effect law “a causes f if py,...,p,” whose

preconditions hold in 0. Let

Ef(o)={f: fis an effect of a in o}.

a

E-(o) ={f:—f is an effect of a in o}.

e Transition Function
U(a,0) = c UEF(o)\ E (0) if Ef N E; = 0 and
undefined otherwise. W can be naturally expanded

to allow sequences of actions as its second parameter.

University of Texas at Fl Paso Knowledge Representation Group

38

Semantics: Actual Path

1. Mapping Y from S to sequences of actions from
the language of D is called a situation assignment

if it satisfies the following properties:
e X(s0) =]
o for every s; € Ly, X(s;) is a prefix of X(s,.).

2. Interpretation M of Lj is a triple (og, ¥, X),
where o(stands for the initial state, ¥ is the transi-

tion function of D, X is a situation assignment of &

and (09, X(s.)) belongs to the domain of W.

3. ¥(s.) is called the actual path of M.

University of Texas at Fl Paso Knowledge Representation Group

39

Semantics: Interpreting facts

1. For any interpretation M = (oo, ¥, X).

e (f at s)is true in M (or satisfied by M) if f is
true in W(og, X(s)).

e (0« occurs at s) is true in M if the sequence

Y(s) o av is a prefix of the actual path of M.

e (s; precedes s9)is truein M if 3(s1) is a proper

prefix of 3(ss)
e Truth of non-atomic facts in M is defined as usual.

2. A set of facts is true in interpretation M if all its

members are true in M.

To define models we need to formalize the assump-
tion: “ No actions occur except those specified by

the domain description.”

University of Texas at Fl Paso Knowledge Representation Group

40

Semantics: Models and Entailment

e An interpretation M = (0g, ¥,) is a model of D
if
1. Facts of D are true in M.

2. There is no other interpretation N = (og, ¥, ¥')
such that N satisfies condition (1) and ¥'(s.) is a

subsequence of X(s,).

e A domain description D is said to be consistent

if it has a model.

e A domain description D entails a fact p (written

as D = p) iff p is true in all models of D.

University of Texas at Fl Paso Knowledge Representation Group

Example: Reasoning about fluents

pl) alive at s
p2) dry at s
) sp precedes s
) squirt occurs_at s
)

p5) shoot occurs_at s

Laws :

(p6) squirt causes —dry

(p7) shoot causes -—alive

1. D; |= ((—dry A alive) at s1)

2. Dy &= ((—=dry A —alive) at s.)

41

University of Texas at Fl Paso Knowledge Representation Group

Example: Reasoning by cases

Shooting with two guns:

Facts :

(q1) alive at s

(q2) (loaded, at sg) V (loadedsy at sg)
(q3) [shooty, shoots] occurs_at s Ds
Laws :

(q4) shoot; causes —alive if loaded,;

(¢5) shooty causes —alive if loaded,

Ds |= —alive at s,

42

University of Texas at Fl Paso Knowledge Representation Group

Example: Explaining observations
pl) alive at s
p2) dry at s

(

(

(p3) s9 precedes s
(p4) squirt occurs_at s
(

p5') —alive at sy

Laws :

(p6) squirt causes —dry

(p7) shoot causes -—alive

D, = [squirt, shoot] occurs_at s

43

University of Texas at Fl Paso Knowledge Representation Group

44

Hypothetical Reasoning

Hypothesis are expressions of the form
f after aat s (*)

read as “Assuming that the sequence a of actions
occur starting at the situation s fluent f would be

true in the resulting situation”.

Let M = (09, ¥, Y) be a model of a domain descrip-
tion D.

A hypothesis (*) is true in M if f is true in the
state W(og, X(s) o a).

Let H; and H> be two sets of hypothesis. H; entails
H, in D if H, is true in every model of D in which

H, is true.

University of Texas at Fl Paso Knowledge Representation Group

45

Applications

Consider a reasoner, whose knowledge is spec-
ified by a domain description of L; and whose

behavior is defined by the following loop:

e observe the world and add new information

to D

e select a goal G

e find plan [aq,...,a,] to achieve GG
e execute a;

A sequence « of actions is a PLAN for achiev-

ing a goal G if for every fluent f € G

=p (f after aat s.)

University of Texas at Fl Paso Knowledge Representation Group

46

Example

Jack needs to bring his packed suitcase to the air-
port. He has a car, knows how to drive it to the
airport, etc. Consequently, his plan of packing a
suitcase and driving to the airport is adequate. He
packs the suitcase and observes that his car being
hit. The car is no more, the previous plan is in-
validated. New plan - rent a car and drive to the

alrport.

Problem: Construct a program simulating Jack’s

behavior.

University of Texas at Fl Paso Knowledge Representation Group

47

Jack’s trip to the airport

imnitial facts :

(f1)home at s
(f2)—at_airport at s
(f3)has_car at s

Laws :

[1)rent causes has_car
[2)hit causes —has_car

[4)drive causes —-homeif has_car

(

(12)

(I13)drive causes at_airport if has_car
(14)

(15)

[5)pack causes packed if home

Goal: bring packed suitcase to the airport

University of Texas at Fl Paso Knowledge Representation Group

48

Jack’s trip continued

e planning:
? =p, (packed A at_airport) after o at s,
oy = [pack, drive]
e execution: D; = Dg U (pack occurs_at sg)
e observation: Dg = D; U (hit occurs_at s1)
e planning:
Does the old plan work?
? b, (packed A at_airport) after ag at s,
No. Find new plan.
? b, (packed A at_airport) after « at s,

ap = [rent, drive]

University of Texas at Fl Paso Knowledge Representation Group

49

Implementation

e Translate domain descriptions of L into declara-

tive logic programs.

e Prove soundness (completeness) w.r.t. entailment

of L().

e Translate the declarative program into procedu-
ral program with a general purpose query-answering

mechanism.

e Prove soundness (completeness) w.r.t. declarative

program.

e Optimize.

University of Texas at Fl Paso Knowledge Representation Group

30

Simple Domain Descriptions

We will say that a domain description D is simple

if

1. D is consistent,
2. D has an explicit actual path,
3. all facts of D are atomic, and

4. D does not contain contradictory causal laws.

We’ll use the following notation:

A for actions

R for lists of actions

F, G for fluent literals

P for lists of fluent literals

Let D be a simple domain description with explicit

actual path ag,...,a._1.

University of Texas at Fl Paso Knowledge Representation Group

51

The LP approximation IIp of D consist of the rules:

Domain Dependent Axioms:

(AP) Description of Actual Path

imm_follows(sy, sp).

imm_follows(sy, Sp_1).

occurs_at(ag, So).

occurs_at(ay_1, Sp_1).

(BC) Boundary Conditions

true_at(f,s;) € Ilp for each (f at s;) € D

(CL) Causal Laws

causes(a, f,p) € llp for each (a causes f if p) € D

University of Texas at Fl Paso Knowledge Representation Group

52

Domain Independent Axioms:

(EA) Effects of actions

true_after(F,[],S) :— true_at(F,.9).
true_after(F,[A|R],S) :— causes(A, F, P),

all true_after(P, R, S).
false_after(F, R, S) :— contrary(F,G),

true_after(G, R, S).

all true_after([], R,.S5).

all true_after([F|P],R,S) :— true_after(F, R,S),
all true_after(P, R, S).

one_false_after(P,R,S) :— member(F,P),
false_after(F, R, S).

University of Texas at Fl Paso Knowledge Representation Group

(FI) First Inertia Axiom

true_after(F,[A|R],S) :— fluent literal(F),
true_after(F, R,S),
not ab(F, A, R, S).

ab(F, A, R,S) :— contrary(F,G),

causes(A, G, P),

not one_false_after(P, R,S).
(SI) Second Inertia Axiom

true_at(F, S2) :— fluent literal(F),
imm_follows(S52,S51),
occurs_at(Al, S1),
true_after(F,[Al],S1).

33

University of Texas at Fl Paso Knowledge Representation Group

Soundness and Completeness of 1l

Since D = f at s iff D = f after |[] at s, from
now on we will limit our query language to formulas
of the form f after « at s. For any query ¢ of this

form, by 7(q) we will denote true_after(f, a,s).

We will say that a (declarative) program Ilp is sound

w.r.t. D if IIp is consistent and for any query ¢, if

IIp = 7(q) then D = q.

Theorem. For any simple domain description D,

IIp 1s sound w.r.t. D.

o4

University of Texas at Fl Paso Knowledge Representation Group

39

Example of incompleteness

Facts :

(pl) alive at s

(p3) sy precedes s
(p4) shoot occurs_at s
(

p5') —alive at s;

Laws :

(p7) shoot causes -—alive if loaded

It is easy to see that D; |= (loaded at s() while IIp,

does not.

University of Texas at Fl Paso Knowledge Representation Group

56

Completeness Results

Theorem For any simple domain description D with
complete initial state and any query ¢, D = ¢ iff
II D |: qg.

Theorem. Let II}, be obtained from D by adding
true_at(f, so) or ~true_at(f, sg).

for every fluent f. Then for every simple domain

description D and any query ¢, D = ¢q iff I}, = .

University of Texas at Fl Paso Knowledge Representation Group

11, as a Prolog program

Recall that IIp is viewed as a schema describing the
set of all ground instances of program with variables
which respect types. All previous results are proven
under this assumption. Syntactically IIp can also be

viewed as a logic program with variables.

Theorem. For any simple domain description D
and any query ¢, Prolog interpreter applied to Ilp

and ¢ answers “yes” iff IIp = q.

IIp can be used as a “test” part for “generate and

test” planner.

57

University of Texas at Fl Paso Knowledge Representation Group

Comments on the planner

Generate part is simplistic but Test part is not!

e Planner is build from specification to implemen-
tations with necessary correctness proofs being a

part of programming process.
e Works even if information is incomplete

e Allows complex domains with appearing and dis-

appearing objects, exogenous actions, etc.

e Will grow and improve with development of ac-
tion theories and inference methods for logic pro-

grams and deductive databases

Generate part can be made more sophisticated by
some top-down analysis and by incorporation of heuris-

tics.

38

University of Texas at Fl Paso Knowledge Representation Group

What Next? (Very short list)

e Inference methods for programs with multiple an-
swer sets or/and disjunction or/and abduction
to make the test part of the planner complete.
(Clarity at this stage can still be more important
than efficiency, but efficiency should be sufficient

to run prototypes).

e Allow domains with more sophisticated ontolo-
gies (e.g. real numbers and continuous processes)
and more expressive logic (e,g. allow normative

causal statements such as “Shooting normally ends

in death”).

e Compute entailment in domain description (pre-

ferrably by LP methods).

e Keep comparing with other approaches.

39

University of Texas at Fl Paso Knowledge Representation Group

60

Some references

Situation and Event Calculs:

J. McCarthy and P. Hayes,” Some philosophical prob-
lems from the standpoint of artificial intelligence”,

"Machine Intelligence”, vol 4, 1969

Kowalski and Sergot, “A logic-based calculus of events”,
New Generation Computing, Vol 4, No 1, 1986, pp.
67-95

M. Gelfond, V. Lifschitz and A. Rabinov, ”What
are the limitations of the situation calculus?”, Auto-
mated Reasoning: Essays in Honor of Woody Bled-
soe, 1991, edited by R. Boyer, ” Kluwer Academic”.

R. Reiter, "Proving Properties of States in the Sit-
uation Calculus”, Artificial Intelligence, 64:337-351,
1993

University of Texas at Fl Paso Knowledge Representation Group

61

Pinto and Reiter, “Temporal reasoning in logic Pro-

gramming: a case for the Situation Calculus”, Proc.

of ICLP93

Miller and Shanahan, “Narratives in the situation

calculus”, Journal of Logic and Computation, 4(5):513-

530, 1994

Van Belleghem, K. and Denecker, M. and De Schr-
eye, D., "Combining Situation Calculus and Event
Calculus”, "Proc. of 1995 International Conference

on Logic Programming”, pp. 83-97,1995.

University of Texas at Fl Paso Knowledge Representation Group

62

Reasoning about Actions in Abductive Logic

Programming

M. Shanahan,” Prediction is deduction but explana-

tion is abduction”, Proc. of IJCAI-89, 1055-1060.

Denecker, M. and De Schreye, D., Representing In-
complete Knowledge in Abductive Logic Program-
ming”, Journal of Logic and Computation, 1995, Vol
5, Num 5, pp 533-579.

Action Description Languages

M. Gelfond and V. Lifschitz, " Representing Actions
and Change by Logic Programs”, the Journal of Logic
Programming,1993, vol 17, num 2,3,4, pp. 301-323.

N. McCain and H. Turner, “A causal theory of ram-
ifications and qualifications”, In Proc. of IJCAI 95,
pp. 1978-1984

University of Texas at Fl Paso Knowledge Representation Group

E. Giunchiglia and V. Lifschitz, “Dependent Flu-
ents”, In Proc. of IJCAI95, pp. 1964-1969

C. Baral, M. Gelfond, A. Provetti, “Representing
Actions: Laws, Observations and Hypotheses”, to
appear in the special issue of the Journal of logic

Programming, 1997

C. Baral, M. Gelfond “Reasoning about eftects of
concurrent actions”, to appear in the special issue of

the Journal of logic Programming, 1997

List of active researchers and other related info can

be found in

http://cs.utep.edu/actions/researchers.html

63

University of Texas at Fl Paso Knowledge Representation Group

