Some Thoughts on the Development of Action

Theories

Michael Gelfond

Texas Tech University

July 10, 2011

Michael Gelfond ASPOCP



Introduction

In this talk I'll discuss some history and some recent
developments in the Theory of Action and Change —the
area which has been one of my major research interests
for more than 25 years.

I’d like to acknowledge my many collaborators without
whom my work could not have been possible but who
are of course not responsible for what I have to say.

This is not an attempt to give an overview. There are
books written on the subject and they only cover a
small part of work done in this area.

Michael Gelfond ASPOCP



Introduction

Rather the talk gives a simplified personal story of my
own research.

I describe some questions I attempted to address in this
research, the choices I was confronted with, and
methodological assumptions used in the process.

In my experience this type of information may be
useful for newcomers to the field (and even for those
who worked in it for some time) but not easily
extractable from the published work.

Michael Gelfond ASPOCP



The Goals

e Goal: understand how to build software components
of intelligent agents capable of reasoning and acting in
changing environment.

e Main hypotheses: to exhibit intelligent behavior the
agent should have a mathematical model of its
environment and its own capabilities and goals.

e Main problem: what should this mathematical model
look like?

Michael Gelfond ASPOCP



The Initial Landscape

The first answer I learned from John McCarhty: the
agent’s model of the world should be a logical theory
describing the agent’s domain.

Such a theory should contain description of relevant
actions and their direct and indirect effects.

In the 80’s I became familiar with two attempts to
build such theories:

e Situation Calculus (John McCarthy)

e Event Calculus (Robert Kowalski and Marek
Sergot)

Michael Gelfond ASPOCP



Situation Calculus: the Original Ontology

@ Objects of three types:

e fluents — functions of time;

e actions — atomic, deterministic and sequential;

e situations — complete states of the universe at an
instant of time.

© Time is branching and discrete;

© Changes in the values of fluents can only be caused
by execution of actions.

Michael Gelfond ASPOCP



Situation Calculus: The Language

In the basic language of situation calculus we can

e Name situations, e.g.
So, res(load, sg), Tres(shoot,res(load, sg))
@ State that a fluent is true in them, e.g.
holds(dead, res(shoot, sg))

@ Use classical first-order logic to describe effects of
actions and other properties of dynamic domains.

Michael Gelfond ASPOCP



© Ontology is unclear, e.g. are statements
so = res(a, so)

holds(f, res(a, so)) /A holds(g, res(b, sp))

consistent with the ontology?

© Ontology is not sufficiently rich — no concurrent
actions, no continuity, etc.

© Adequacy of classical logic is in question: frame
problem, etc.

Michael Gelfond ASPOCP



Questions to Answer

@ Can the intuition behind basic notions of Situation
Calculus be clarified?

© Can its ontology be enriched without basic change
of the original notions?

© What logical language and what entailment relation
should be used to axiomatize Situation Calculus?

Michael Gelfond ASPOCP



Finding Logic: Circumscription

The original idea due to McCarthy was to:

use the language of first-order logic with entailment
defined by truth in the set of models minimal with
respect to some ordering relation.

Later the language was expended to include some
second order constructs.

Using this formalism Baker, Lifschitz, Reiter, Fangzhen
Lin and others found partial solutions to the frame
problem which used non-trivial orderings on models.

Michael Gelfond ASPOCP



Problems with Minimization Based Approaches

I admired this work but:

e The ordering relations were too complex and seemed
tailored toward a particular problem.

I wanted to solve frame problem as suggested by
McCarthy — by representing the inertia axiom as a
default.

e Minimization changes the standard meaning of
classical logical connectives in sometimes unpredictable
ways.

I wanted the language with reasonably clear intuitive
meaning of the connectives.

Michael Gelfond ASPOCP



Problems with Minimization Based Approaches

e The distance from theories in Situation Calculus to
implementable specifications seemed rather long.

(There were, however, interesting attempts to reduce
circumscriptive theories to classical first-order theories
and even to Prolog programs.)

¢ In my mathematical philosophy I am a constructivist.
Among other things that means that I prefer to avoid
the use of complex set theory which forms the basis of
Tarskian semantics.

Michael Gelfond ASPOCP



Finding Logic: Logic Programming Languages

Because its inability to represent incomplete
information and difficulties with semantics for negation
as failure logic programming had, for a long time, been
viewed unsuitable to serve as language of SitCalc.

Two papers with V. Lifschitz have been instrumental in
refuting this view:

e “Classical Negation in Logic Programs and
Disjunctive Databases” introduced Answer Set Prolog.

e “Representing Actions and Change by Logic
Programs”, 1993, formulated SitCalc in the new
language and gave partial solution of the frame problem
via the inertia axriom.

Michael Gelfond ASPOCP



Enriching Ontology

“For a long titme many authors took it for granted that
the Situation Calculus was too ontologically
impoverished to be able to represent concurrent actions.
This fallacy was finally laid to rest by

Gelfond, M., Lifschitz, V., and Rabinov, A. What are
the Limitations of the Situation Calculus? 1991.”

M. Shanahan, Solving the Frame Problem.

The same paper addressed some other important
limitations and influenced further developments.

Michael Gelfond ASPOCP



One more limitation

There is one more limitation of SitCalc which remained
largely unnoticed for a long time — its inability to
express actual occurrences of actions and observations
of fluents.

holds(f,res(a,sp)) is not a statement of fact — it is a
hypothesis which says “if a were executed in sy then f
would be true in res(sg)”.

The original SitCalc was a language for hypothetical
reasoning.

(Note that the original Event Calculus could represent
actual events but could not deal with hypothetical
reasoning.)

Michael Gelfond ASPOCP



One more limitation (Continued)

The problem was addressed in the dissertation:

¢ J. Pinto, “Temporal Reasoning in Situation Calculus”,
1994.

and, independently, in

e C. Baral, M. Gelfond and A. Provetti, “Reasoning
About actions: Laws, Observations and Hypotheses”,
1995 (Journal version 1997)

Both papers extended SitCalc to deal with actual time
line and history of actions and observations.

Michael Gelfond ASPOCP



Another Question: Correctness of Action Theories

How to ensure that axiomatization of an action domain
is reasonably accurate? There were two methods:

e Reasonable behavior on a good collection of test cases.

e FEquivalence of action theories for the same domain
written in different formalisms by different people.

But different theories were built on different, and
sometimes incompatible, underlying assumptions which
normally were nor explicitly stated.

Proving entailment for different formalisms was
difficult. Even more difficult was to prove equivalence of
theories.

Michael Gelfond ASPOCP



The Next Level of Abstraction

Vladimir and I decided to try another criteria:

e Find a simpler, more abstract (but possibly less
general) way to model dynamic systems.

e Prove correctness of action theory of a given domain
with respect to its more abstract model.

e Prove equivalence of theories formulated in different
formalisms by showing their equivalence to the abstract
model.

Michael Gelfond ASPOCP



Transition Diagrams and Recorded Histories

After a number of tries and errors Vladimir and I came
up with a “new” model of a dynamic system:

@ A transition diagram whose nodes represent
physically possible states of the domain and whose
arcs are labeled by actions.

@ Recorded history — a collection of assertions about
the behavior of the dynamic system up to some
point n.

The first describes all physically possible trajectories of
the system, the second — trajectories compatible with
the corresponding assertions.

Action languages are tools for describing such models.

Michael Gelfond ASPOCP



Action Language A

“Syntar and semantics of A precisely describe the class
of action domains under consideration and the intended

ontology of action.

The representation of a particular domain in A can be
viewed as a high level specification for the task of
formalizing this domain in logic programming or
another logic based formalism.

The soundness and completeness of each formalization
become precisely stated mathematical questions. The
possibilities and limitations of different representation
methods can be compared in a precise fashion.”

Conclusion of 1993 paper.

Michael Gelfond ASPOCP



First Proofs of Correctness

The idea seemed to work. In 1993 paper with Vladimir
and in 1995 paper with Chitta and Alessandro Provetti
we were able to prove soundness of logic programming
axiomatizations of a broad class of action descriptions
of A and even soundness (and sometimes completeness)
of Prolog based algorithms for temporal projections.

The proofs used non-trivial mathematics of logic
programming: properties of signed programs, results on
termination, non-floundering, and occur check, relation
between ASP and Clark’s semantics, etc.

Michael Gelfond ASPOCP



Weakness of A

e By design, A was a weak language. No state
constraints, no concurrent actions, etc.

e But A was not simple enough. There was no clear
separation between description of a transition diagram
and and description of trajectories of interest to the
agent.

The first problem was solved by McCain and Turner.
The structuring of action theories evolved gradually.

In Action Languages, 1998, Electronic Transactions to
Al, we divided action theory into two parts. The second
part was called query language. It is also referred to
now as recorded history.

Michael Gelfond ASPOCP



Action Description Language B

Action description languages define transition diagrams
of dynamic systems. There are two families of such
languages which evolved from languages B and C.

Action descriptions of B are collections of statements of
the form:

e dynamic causal law:
a causes f if p

e state constraint:
fifp

e impossibility condition:

impossible a if p

Michael Gelfond ASPOCP



Action Description Language B

B is closely related to logic programming. In fact its
laws can be translated into rules

e dynamic causal law:
a causes f if p

holds(f, T+ 1) :- holds(p, T),occurs(a, T).

e state constraint:

fifp
holds(f,T) :- holds(p, T).
e impossibility condition:
impossible a if p

—occurs(a, T) :- holds(p, T).



Action Description Language B

To define ¢’ in a transition (o, a, 0’) of the diagram
defined by action description A of B we construct a
logic program consisting of

e encoding of laws of A as above,

e inertia axiom:
holds(F, T+ 1) :- holds(F, T), not —“holds(F, T+ 1)

with T ranging over {0, 1},

¢ encoding of o, a:
{holds(f,0) : f € o} U{occurs(a,0)}.
o’ is defined by an answer set of this program.

Michael Gelfond ASPOCP



Action Description Language C

Language C is syntactically close to B.

Action description of a (simplified and syntactically
incorrect version) of C has impossibility conditions as in
B and causal laws of the form:

e dynamic causal law:
a causes has__a_cause(f) if p
e state constraint:

has a_ cause(f) if p

Michael Gelfond ASPOCP



Action Languages B and C

Despite many similarities B and C are very different
languages based on different intuitions and different
logical formalisms.

e The semantics of B incorporates the inertia axriom —
“Things normally stay unchanged’ and is based on ASP.

e C incorporates causality principle — “ Everything true
in the world must be caused’ and is based on Causal
Logic of McCain and Turner.

Michael Gelfond ASPOCP



Action Languages B and C

e Addition of a recursive constraint “f if ”” does not
change a theory of B.

But addition of analogous constraint
“has_a_cause(f) if ” does change a theory of C.

e Theories of C can be translated into ASP but the
translation is somewhat less natural, e.g.

has a cause(f) if p
is translated as

holds(f,T) :- not —holds(p, T)

Michael Gelfond ASPOCP



Action Languages B and C

Both, B and C gave rise to families of languages sharing
their basic principles.

B evolved into AL, H and ALM; C into C* and MAD

Unfortunately I am not aware about results establishing
precise relationship between languages from these two
families.

I found Causal Logic to be less intuitive and, in some
imprecise sense, less general than ASP, and hence
opted for B.

Another choice is also reasonable but it shall not be
based on the alphabetical order.

Michael Gelfond ASPOCP



The Impact of Action Languages

Rather early it became clear that we were somewhat
successful in our original goals: Action languages
provided high level specification which

e allowed to prove soundness and (sometimes)
completeness of various axiomatizations;

e helped to establish precise relationship between
axiomatizations (including those given in different
logical languages);

e provided a tool for classification of action theories.

Michael Gelfond ASPOCP



The Impact of Action Languages (Change of model)

But there was another important impact:

@ The language of mathematical model of dynamic
domain changed from logic to automata.

o Logic is used to describe this (intended) model.
Another logic is used to reason about it.

@ The model was provided with structure. In addition
to action description and history Jorge Lobo and I
later added description of policies specifying
desirable trajectories of the agent.

(Authorization and Obligation Policies in Dynamic
Systems, ICLP08, 2008)

Michael Gelfond ASPOCP



The Impact of Action Languages (New Methodology)

There are now foundations of methodology for building
intelligent agents which is based on action languages
and logic programming.
© Action languages define mathematical model of
agent and its environment.

© Problems like planning, diagnostics, etc. are
reduced to questions about this model.

© The process of answering these questions is reduced
to reasoning about logic programs.

© Correctness of the corresponding algorithms is
proven with respect to original action language
specification.

Michael Gelfond ASPOCP



What Needs to be Done? Improve ASP Solvers

1.To decrease the gap between high level and
executable specifications:

o Integrate different reasoning mechanisms such as
ASP, CLP, SMT, etc. to improve efficiency of logic
programming engines.

S. Baselice , P. A. Bonatti , M. Gelfond. Towards an
integration of answer set and constraint solving, 2005
Mellarkod and M. Gelfond, Enhancing ASP systems for
Planning with Temporal Constraints, LPNMR 2007

e Develop and implement incremental reasoning
algorithms which accommodate interaction of agent
with the environment. (See Reactive Answer Set
Programming by Potsdam group)

Michael Gelfond ASPOCP



What Needs to be Done? Modular Action Languages

Gelfond, M., Inclezan, D. (2009). Yet Another Modular
Action Language. In Proceedings of SEA-09, pp. 64-78.

“ modular action language ALM, which extends action

language AL by providing it with a modular structure
and the ability to separate the definition of classes of
objects of the domain from the definition of instances of
these classes. This, together with the means for defining
actions and fluents of the domain as special cases of
previously defined ones facilitates the stepwise
development, testing, and readability of a knowledge
base, as well as the development of knowledge
representation libraries.”

Michael Gelfond ASPOCP



What Needs to be Done? Mathematics

Build serious mathematical theory of action languages,
e.g.

Give sufficient conditions to guarantee that action
description in B and C

e is deterministic;

e for every state o and action a, a is executable in o iff
there is impossibility condition "impossible a if p" in D
such that p is true in o.

Michael Gelfond ASPOCP



What Needs to be Done? Mathematics

T approximates T if nodes of T’ are partial states of T
and paths of T’ preserve some properties T, e.g.

if a sequence « of actions moves s to s’ in T’ then for
every o € T which is compatible with s, « moves o to a
state o’ in T compatible with s’.

Michael Gelfond ASPOCP



What Needs to be Done? Action Architecture

Design new languages, or integrate existing languages
like Golog with action languages.

Build agent environments combining discrete and
continuous computation.

Use this to build interesting (but not necessarily
practical) agents.

Build Libraries of Commonsense Knowledge.

Michael Gelfond ASPOCP



What Needs to be Done? Social Issues

e Create a distinct community with close ties to ASP,
non-monotonic logics, etc.

e Better explain internal problems and achievements of
the field.

e Better explain connections with other fields including
some sub-fields of AI and software engineering.

e Find better ways to share and publish the results.

Michael Gelfond ASPOCP



Other Approaches: Situation Calculus

Now minimization based SitCalc is a well developed
logical theory.

R. Reiter, “Knowledge in Action — logical foundations
for specifying and implementing dynamic systems”

contains accurate account of very rich SitCalc with
parallel actions knowledge producing actions,
continuous time, etc.

SitCalc based programming language Golog allows to
program robots with non-trivial reasoning powers.

Michael Gelfond ASPOCP



Situation Calculus

Despite its well developed theory SitCalc solution of
the frame problem was only applicable to domains
without cyclic dependencies between fluents.

This seems to change this year.

In “Causal Theories of Actions Revisited”, 2011
Fangzhen Lin and Mikhail Soutchanski presented a
general solution via an extra minimization.

Michael Gelfond ASPOCP



Last Slide

THANK YOU!

Michael Gelfond ASPOCP



Modules of ALM

Syntactically a module can be viewed as a collection of
declarations of sort, fluent and action classes of the
system.

module name
sort declarations
fluent declarations
action declarations

Michael Gelfond ASPOCP



Example: move between areas

module move between areas

sort declarations
things : sort
movers : things
areas : sort

fluent declarations
loc_in(things, areas) : inertial fluent

axioms
—loc_in(T,Az) if disjoint(A,A3),
loc_in(T, Aq).

end of loc_in

Michael Gelfond ASPOCP



Example: move between areas

action declarations
move : action
attributes
actor : movers
origin, dest : areas
axioms
move causes loc_in(O,A) if actor=0,
dest = A.
impossible move if actor=0,
origin = A,
—loc_in(O,A).
impossible move if origin = A;,
dest = A,
—disjoint(A1,A2).
end of move

Michael Gelfond ASPOCP



Comments

e Actions of a module are action classes.

e Sorts, fluents, actions, and axioms of the module are
uninterpreted.

e Semantically, a collection of modules can be viewed as
a mapping of possible interpretations of the symbols of
the domain into the transition diagram describing a
dynamic system.

e System description is a set of modules followed by an
interpretation of its symbols.

e Modules can be combined into libraries and imported
from there using import statements.

Michael Gelfond ASPOCP



Interpreting the Symbols

structure of basic travel

sorts
michael,john in movers

london,paris,rome in areas
actions

instance move(O,A1,A>) : move

actor := O

origin := A4

dest := Ay
statics

disjoint(london,paris).
disjoint(paris, rome).
disjoint(rome, london).

Michael Gelfond ASPOCP



Actions as Special Cases

module carrying things

sort declarations
areas,things : sort

movers, carriables : things
fluent declarations

holding(things,things) : inertial fluent
loc_in(things, areas) : inertial fluent
axioms

loc_in(T,A) =loc_in(O,A) if holding(O,T).

Michael Gelfond ASPOCP



Actions as Special Cases

action declarations
carry : move
attributes
carried thing:carriables
axioms
impossible carry if actor=0,

carried thing =T,
—holding(O,T).

The language introduced by Daniela Inclezan and
myself has already changed my KR style. It is however
still work in progress.

Michael Gelfond ASPOCP



